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Abstract

We define strict and lax orthogonal factorization systems on double categories.
These consist of an orthogonal factorization system on arrows and one on dou-
ble cells that are compatible with each other. Our definitions are motivated by
several explicit examples, including factorization systems on double categories of
spans, relations and bimodules. We then prove monadicity results for orthogo-
nal factorization systems on double categories in order to justify our definitions.
For fibrant double categories we discuss the structure of the double orthogonal
factorization systems that have a given orthogonal factorization system on the
arrows in common. Finally, we study the interaction of orthogonal factorization
systems on double categories with double fibrations.
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1 Introduction

Orthogonal factorization systems (OFS) for ordinary categories were introduced by
Isbell [? ], Freyd and Kelly [? ] and Bousfield [? ]. An orthogonal factorization system
provides a category with a notion of images along its arrows, generalizing the usual
image factorization on categories such as Set. For instance, various factorization sys-
tems on the category of categories give rise to the following images for functors: the
replete images, the essential image and the full image. This concept of image is inte-
gral to the foundational concepts of homological algebra. One of the most well-known
applications of factorization systems (both of orthogonal ones and of weak algebraic
ones) is in homotopy theory, as part of Quillen model structures. More generally,
orthogonal factorization systems reveal important properties of the structure of a cat-
egory, and may assist in defining a functor on a category. The orthogonal factorization
system can be viewed as a type of distributive law for the interaction between the
two classes of arrows: if one can compose the arrows in each class and has a way of
re-factorizing a composition of an arrow in the left class after an arrow in the right
class, one has now a composition law for the whole category.

A related aspect of orthogonal factorization systems is their interaction with fibra-
tions between categories. Each fibration gives rise to what has been called a Cartesian
factorization system on its domain: the left class consists of the vertical arrows in the
fibration (and satisfies the 3-for-2 property) and the right class consists of the Carte-
sian arrows. This result can be generalized to show that fibrations have the property
that one can lift any factorization system in the base to a factorization system in the
total category in a canonical way.

In this paper we will introduce a notion of orthogonal factorization system for
double categories that generalizes that for ordinary categories. We will call these
double orthogonal factorization systems (DOFS). We will show how a number of well-
known orthogonal factorization systems generalizes to double orthogonal factorization
systems.

With the recent introduction of the notion of a fibration between double categories,
we believe it is time to develop an analogous notion of orthogonal factorization system
for double categories that interacts well with the double fibrations.

Motivated by examples of factorization systems on the double categories of quartets
and spans in an arbitrary category C namely Sq(C) and Span(C) respectively, as well
as the double category Rel(C) of relations in a regular category C, we see how the
orthogonal factorization systems on C can be lifted to factorization systems on the
arrows and on the double cells of the double categories, in a way that makes the two
factorization systems suitably compatible.

This leads us to our internal definition of a double orthogonal factorization system
(DOFS): a pseudo category object in a suitable category of categories equipped with
an orthogonal factorization system and a choice of factorizations. We require that the
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source, target and unit functors of such category objects preserve the factorizations,
but the composition functor in the category diagram can be more ‘loose’. If the com-
position functor preserves both classes, we call this a DOFS (our default is ‘pseudo’),
if it preserves the factorizations we will call it a strict DOFS, if it preserves only the
right class we call it a lax DOFS, and if it preserves only the left class we call it a
colax DOFS.

Note the similarity with the notion of double fibration [? ]. For double fibrations
one takes internal pseudo categories in the category of fibrations with a chosen cleavage
but whose arrows only preserve cartesian arrows; however, one requires that the source,
target and unit functors in a double fibration diagram preserve the chosen cleavages.
The reason for this restriction is the same as it is for us: we require the existence of
the pullback of the source along the target as an object in our category.

Classically, a good way to capture and understand orthogonal factorization systems
and morphisms between them is in terms of Eilenberg-Moore algebras for a particular
2-monad. The first result in this direction was published by Coppey [? ] showing
that strict factorization systems can be viewed as strict algebras for the squaring 2-
monad. The full result characterizing orthogonal factorization systems with a chosen
factorization as the pseudo-algebras for this 2-monad was established by Korostenski
and Tholen in [? ]. This result leads us to four natural notions of morphism between
categories with an OFS: the strict algebra maps preserve the chosen factorizations, the
pseudo maps preserve both classes of morphisms, the lax maps preserve the right class
and the oplax maps preserve the left class. This provides us with four 2-categories in
which to take internal pseudo-categories in order to define a corresponding notion of
DOFS. We illustrate this with several examples in each category of algebras.

However, there is a different way to approach the generalization from OFSs to
DOFSs. In Theorem 4.2 we establish a monadicity result that intuitively say that
suitable 2-monads on a 2-category give rise to a 2-monad on the 2-category of internal
pseudo-categories with internal (pseudo or oplax) functors as arrows, and levelwise
(also called, internal) transformations as 2-cells, with the property that the 2-category
of algebras for the 2-monad on the internal categories is isomorphic to the 2-category
of internal categories in the algebras of the original 2-monad. To be precise,

Theorem 1.1 (Theorem 4.2) Let K be a 2-category and let (T : K → K , η : Id =⇒
T, µ : T 2 =⇒ T ) be a 2-monad whose underlying 2-functor preserves pullbacks. Then T induces
2-monads

T opl : PsCatopl(K )→ PsCatopl(K )

Tps : PsCatps(K )→ PsCatps(K )

such that
T opl-PsAlg lax

∼= PsCatopls(T -PsAlg lax)

Tps-PsAlgps ∼= PsCatpss(T -PsAlgps)

where PsCatopls(T -PsAlg lax) (respectively, PsCatpss(T -PsAlgps)) is the full sub-2-category of
PsCatopl(T -PsAlg lax) (respectively, PsCatps(T -PsAlgps)) on those pseudo-categories whose
source, target and identity assignment are strict morphisms between normal pseudo-algebras.
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The intuitive idea behind this theorem is that, interestingly, objects, arrows and
2-cells on the two sides of the isomorphisms are presented by the same data, grouped
with each other in two different ways. When applied to the 2-category of categories, this
general monadicity theorem allows us to view our various flavours of double categories
with a DOFS as pseudo algebras for 2-monads defined by sending a double category
D to its cotensor with a single arrow double category, D→.

This lets us establish the correct notions of arrows between double categories with
a DOFS. The natural notion of 2-cell coming from the algebra perspective is that of an
internal, or levelwise, transformation. These are the transformations with components
that are arrows in the strict direction of the double category. We simply take all such
transformations between the appropriate (lax, colax or pseudo) morphisms. However,
we can also add transformations in the proarrow direction: these correspond to suitable
functors from the object category of the domain to the arrow category of the codomain,
in a manner compatible with the OFS structures on the underlying categories.

We end the paper with a large variety of examples. We show how extensions and
restrictions in fibrant double categories allow us to lift each orthogonal factorizatiom
system on its category of arrows to two double ortogonal factorization systems. We also
show that these are initial and terminal among all possible liftings, and illustrate this
in the double categories of spans, relations and profunctors. We discuss the relationship
between double orthogonal factorization systems and double fibrations and show how
a double factorization system on the base can be lifted to one on the total double
category. In particular for the double category of spans we have four distinct double
orthogonal factorization systems extending the epi-mon factorization system on sets.

Outline of the paper

Section 2 recalls the definition of orthogonal factorization systems for ordinary cat-
egories, as well as their monadicity result. We then apply such monadicity result to
discuss strict, pseudo, lax and oplax arrows and 2-cells between categories equipped
with an orthogonal factorization systems. This provides us with various 2-categories
of categories with an OFS. We also establish a useful result on pullbacks of categories
with an OFS.

In Section 3, after presenting our motivating examples (the double categories of
quartets, relations and spans), we give the internal definition of a double orthogonal
factorization system (as a suitable internal category in one of the 2-categories of cate-
gories with an OFS). We then present an equivalent characterization in terms of cells,
and conclude the section with examples related to the double category of quintets.

Section 4 establishes the monadicity of double categories equipped with a double
orthogonal factorization systems as algebras for an F -monad. This sheds light on
the various flavours (strict, pseudo, lax and oplax) of double orthogonal factorization
systems, naturally forming various 2-categories of DOFS. However, note that in the
larger world of double categories there are more arrows and 2-cells available, placing
all of these 2-categories inside a larger double category.

In Section 5 we first prove some general results about DOFS on fibrant double
categories. We then explore a list of examples (modules, profunctors, quantale-valued
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relations, and spans) of fibrant double categories with multiple DOFS lifting a common
OFS on the arrows.

Section 6 discusses the lifting of double orthogonal factorization systems along
double fibrations. We show many examples, including explicit descriptions of (pseudo-
vertical, cartesian) factorization systems and the way they interact with the double
factorization systems introduced in previous sections.

Notation

Given a 2-category K , we will write PsCatps(K ) (respectively, PsCat lax(K ),
PsCat opl(K )) for the 2-category of normal (i.e, unitary) pseudo-categories internal to
K , with normal (i.e, unitary) internal pseudo (respectively, normal lax, normal oplax)
functors and internal, also called levelwise, natural transformations; we will review
these concepts in detail in Definition 3.9.

Given a monad T : C → C on a category C, we will write T -Alg for the category of
Eilenberg-Moore T -algebras and algebra morphisms.

Given a 2-monad T : K → K on a 2-category K , we will denote by T -PsAlg
(respectively, T -PsAlgps, T -PsAlg lax) the 2-category of normal pseudo-algebras with
strict (respectively, pseudo, lax) morphisms and 2-cells (i.e, T -transformations).

2 Categories of factorization systems

In this section, we first recall ordinary orthogonal factorization systems and their
monadicity over the 2-category Cat of categories. We then extract from this monadicity
result three flavours of morphisms between categories with an orthogonal factorization
system. Finally, we study the corresponding 2-categories of categories equipped with
an orthogonal factorization system.

Definition 2.1 Let C be a category. An orthogonal factorization system on C consists of
two classes of morphisms L and R such that:

• The classes L and R are closed under composition, and contain all isomorphisms.

• Every morphism f : A → B in C can be written as f = rf ◦ ℓf where rf ∈ R and
ℓf ∈ L , giving commutativity of the following diagram:

A B

Im(f)

f

ℓf rf

• For any commutative square

• •

• •

f

u v
∃!e
g

where u ∈ L , v ∈ R , there exists a unique e such that g = v ◦ e and f = e ◦ u.
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The target object of ℓf (equivalently, the source of rf ) is often called the image of
f , with respect to (L,R). Note that the image is unique up to unique isomorphism.
When we choose a specific factorization for each arrow, the object Im(f) is uniquely
determined.

Definition 2.2 A functorial factorization system on C is an assignment, to each morphism
f ∈ Mor(C), of a pair of morphisms ℓf , rf such that f = rf ◦ ℓf , that extends to a functor
Q : C→ → C (where C→ is the arrow category of C), mapping every f to its image Q(f).

• Q(f) •

• Q(g) •

ℓf

f

u

rf

∃! Q(u,v) v

ℓg

g

rg

Note that every OFS with a choice of a factorization for each arrow is a functorial
factorization system.

Remark 2.3 In this paper, when we say that a category has an OFS, we will always mean
that it is also equipped with a choice of factorizations f = rf ◦ ℓf for every arrow f in the
category. (Note that this is analogous to choosing a cleavage for a fibration.) We will require
that for each identity arrow idA we have ℓidA

= idA = ridA
.

In [? ], Korostenski and Tholen proved a 2-monadicity result for categories with
an orthogonal factorization system. The 2-monad they considered is the squaring 2-
monad (−)→ on Cat , sending any category to its arrow category (also known as its
category of commutative squares). More precisely, they proved the following.

Theorem 2.4 ([? ]) Orthogonal factorization systems, with a choice of factorizations for the
arrows as in Remark 2.3, are the normal pseudo (Eilenberg-Moore) algebras for the squaring
2-monad (−)→ : Cat → Cat .

Remark 2.5 Explicitly, the normal pseudo-algebra structure map associated to an orthog-
onal factorization system (L,R) on a category C is the functor Q : C→ → C that sends every

(A
f−→ B) ∈ C→ to the middle object of its chosen factorization A

ℓf
−−↠ Q(f)

rf
↪−→ B, and sends

every commutative square as on the left below to the unique morphism Q(u, v) on the right
below induced by the functoriality of the orthogonal factorization system:

A C

B D

u

f g

v

A C

Q(f) Q(g)

B D

ℓf

u

ℓg

rf

Q(u,v)

rg

v
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Interestingly, the functor Q contains all the data of the orthogonal factorization system
(L,R). The normality condition precisely imposes that Q is a (strict) retraction of the
diagonal C → C→, which sends A to idA and f : A→ B to (f, f). Considering the factorization

A B A A B

A B A B B

f f

f

f f

in C→, one then finds that

Q(idA, f) = ℓf , Q(f, idB) = rf , f = Q(f, f) = rf ◦ ℓf
provided that the choice of factorization for the identity arrows is ℓidA

= idA = ridA
. We

will always assume that in this paper. The morphisms in L are precisely those f for which
Q(f, id) is an isomorphism, and the morphisms in R are precisely those f for which Q(id, f)
is an isomorphism.

As was noted in [? ], C→ is the free category with an orthogonal factorization system on
a given category C. Its factorization system is given as follows: the left class consists of the
morphisms of the form (i, u) with i iso and u any morphism in C, and the right class consists
of the morphisms of the form (v, j) with v any morphism in C and j iso. A general morphism
(u, v) then factorizes as (u, id)◦(id, v). This is indeed the free algebra on C with respect to the
squaring 2-monad (−)→. One can in fact check that the multiplication µC : (C→)→ → C→ of
the monad precisely translates to the left and right classes described above.

Remark 2.6 Orthogonal factorization systems are in particular algebraic weak factorization
systems, which were introduced in [? ] with the name “natural weak factorization systems”.
As a consequence, we obtain the further monadicity results shown in Proposition 2.7.

We can extract from Q : C→ → C two other functors L,R : C→ → C→, sending

A C

B D

u

f g

v

L7−→
A C

Q(f) Q(g)

u

ℓf ℓg

Q(u,v)

A C

B D

u

f g

v

R7−→
Q(f) Q(g)

B D

Q(u,v)

rf rg

v

Proposition 2.7 ([? ]) Let (L,R) be an orthogonal factorization system on a category C.
Its associated functors L,R : C→ → C→ of Remark 2.6 extend respectively to an idempotent
comonad and to an idempotent monad. The left class L, viewed as a full subcategory of C→,
is precisely the category of Eilenberg-Moore coalgebras for L; as a consequence, it has all
colimits, created by the projection to C→. The right class R, viewed as a full subcategory of
C→, is precisely the category of Eilenberg-Moore algebras for R; as a consequence, it has all
limits, created by the projection to C→.

We can now extract from Theorem 2.4 four flavours of morphisms between cate-
gories with an orthogonal factorization system (see also Remark 2.3), corresponding
to pseudo, lax, colax, and strict morphisms between normal pseudo-algebras. Each
flavour of factorization yields a 2-category of categories equipped with an OFS, whose
1-arrows are given by morphisms of the corresponding type, and 2-cells are natural
transformations.
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Definition 2.8 A morphism of categories with an orthogonal factorization system from
(C, (LC ,RC)) to (D, (LD,RD)) is a functor F : C → D that preserves both the left and the
right classes; i.e, that sends morphisms in LC to morphisms in LD and morphisms in RC to
morphisms in RD.

A lax morphism of categories with an orthogonal factorization system from (C, (LC ,RC))
to (D, (LD,RD)) is a functor F : C → D that preserves the right class: F (RC) ⊆ RD.

A colax morphism of categories with an orthogonal factorization system from
(C, (LC ,RC)) to (D, (LD,RD)) is a functor F : C → D that preserves the left class: F (LC) ⊆
LD.

A strict morphism of categories with an orthogonal factorization system (with a choice
of factorizations) from (C, (LC ,RC)) to (D, (LD,RD)) is a functor F : C → D that preserves
the chosen factorizations on the nose: ℓF (f) = F (ℓf ) and rF (f) = F (rf ) for all f in C1.

Notation 2.9 We obtain the following 2-categories of categories equipped with an OFS,
from the flavours of morphisms above:

• Fact , whose 1-arrows are morphisms of categories with an orthogonal factorization
system;

• Fact lax, whose 1-arrows are lax morphisms;

• Fact colax, whose 1-arrows are colax morphisms;

• Fact str, whose 1-arrows are strict morphisms.

In all of them we use all natural transformations as 2-cells.

Remark 2.10 Let F : (C, (LC ,RC))→ (D, (LD,RD)) be a lax morphism of categories with
an orthogonal factorization system. Call QC and QD the normal pseudo-algebra maps cor-
responding to (LC ,RC) and (LD,RD) and their chosen factorizations respectively. Then F
preserves the factorizations of morphisms in C in a lax way. More precisely, given a morphism
f : A→ B in C and considering its factorization

A B

QC(f)

f

ℓf rf

with ℓf ∈ L and rf ∈ R, there exists a unique morphism ρf : QD(F (f))→ F (QC(f)) which
makes the following diagram commute:

F (A) QD(F (f)) F (B)

F (QC(f))

ℓF (f)

F (ℓf )

rF (f)

ρf
F (rf )

Indeed F (rf ) ∈ RD, as F preserves the right class, and we obtain the unique lifting ρf
by definition of orthogonal factorization system. By uniqueness the morphisms ρf form the
components of a natural transformation ρ : QDF

→ ⇒ FQC .
Analogously, a colax morphism F : (C, (LC ,RC))→ (D, (LD,RD)) of categories with with

an orthogonal factorization system gives rise to a natural transformation λ : FQC ⇒ QDF
→.

If F is a morphism of categories with an orthogonal factorization system, then for every
f : A → B in C the morphism ρf is an isomorphism. So in this case F preserves the
factorizations up to isomorphism.
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Notice then that a strict morphism F of categories with an orthogonal factorization
system preserves in particular both the left and the right classes. Indeed, a morphism is in the
left class if and only if the right part of its factorization is an isomorphism, and F preserves
the factorizations.

Proposition 2.11 Let (C, (LC ,RC)) and (D, (LD,RD)) be categories with an orthogonal fac-
torization system and corresponding normal pseudo-algebra maps QC and QD. For a functor
F : C → D, the following are equivalent:

(i) F is a lax morphism (respectively, morphism, strict morphism) of categories with an
orthogonal factorization system;

(ii) F extends to a lax morphism (respectively, pseudo morphism, strict morphism) between
normal pseudo-algebras for the squaring 2-monad (−)→ on Cat ; i.e, there exists a
natural transformation (respectively, a natural isomorphism, an identity)

C→ D→

C D

F→

QC QD
ρ

F

(1)

such that for every A ∈ C we have ρidA
= idF (A) and, for every commutative square in

C as on the left below, the pentagon on the right below commutes:

A C

B D

u

f g

v

QD(F (g ◦ u)) F (QC(g ◦ u))

QD(QD(F (u), F (v))) F (QC(QC(u, v)))

QD(F (QC(u, v)))

ρg◦u

∼= ∼=

QD(ρf ,ρg)
ρQC(u,v)

where the isomorphisms are given by the normal pseudo-algebra structures;

(iii) (based on [? , Section I.6.2]) there exists a natural transformation (respectively, a natural
isomorphism, an identity) ρ as in (1) such that (1, ρ) : LD ◦ F → F ◦ LC is a lax
morphism of comonads and (ρ, 1) : RD ◦ F → F ◦ RC is a lax morphism of monads,
where LC , RC , LD, RD are the functors of Proposition 2.7, for C and D respectively; i.e,
for every f : A→ B in C the following three diagrams commute:

F (A) F (QC(f))

QD(F (f)) F (B)

F (ℓf )

ℓF (f) F (rf )
ρf

rF (f)

QD(F (f)) F (QC(f))

QD(ℓF (f)) F (QC(ℓf ))

QD(F (ℓf ))

δF (f)

ρf

F (δf )

QD(id,ρf ) ρℓf

QD(F (f)) F (QC(f))

QD(rF (f)) F (QC(rf ))

QD(F (rf ))

ρf

µF (f)

QD(ρf ,id)

F (µf )

ρrf

where δh and µh are given by

A Q(ℓh)

Q(h) Q(h)

ℓh

ℓℓh

rℓh
∃!δh

Q(h) Q(h)

Q(rh) B

ℓrf rh
∃!µh

rrh
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Moreover, the 2-cells between (lax) morphisms of normal pseudo-algebras for (−)→ are
precisely the natural transformations between the underlying functors.

Proof We prove (i) =⇒ (ii). Given f : A → B in C, we can produce the component ρf of
ρ on f as in Remark 2.10. Then ρ is natural by the uniqueness of the liftings required by
definition of orthogonal factorization system. And clearly ρid = id, because the choice of
factorization for the identity is always by identities. It is straightforward to show that the
pentagon commutes, using again the uniqueness of the liftings.

We now prove (ii) =⇒ (iii). We can take the needed ρ to be the natural transformation ρ
given by (ii). By Remark 2.5, naturality of ρ and ρid = id, we obtain that the two triangles
in the first diagram in (iii) commute. Indeed, considering the morphism in C→ on the left
below, naturality of ρ gives the square on the right below

A A

A B

f

f

QD(F (idA)) F (QC(idA))

QD(F (f)) F (QC(f))

ℓF (f)

ρidA

F (ℓf )

ρf

and considering the morphism (f, id) we obtain the other triangle. Evaluating the pentagon of
(ii) for the morphism (id, f) (respectively, (f, id)) in C→, we obtain the pentagon on the left
(respectively, on the right) of (iii). It is indeed straightforward to show that the isomorphisms
of the pentagon of (ii) become the appropriate morphisms δ and µ.

Finally, we prove (iii) =⇒ (i). The lax morphism of monads (ρ, 1) induces a functor
RC-Alg → RD-Alg . So by Proposition 2.7, F preserves the right class. If ρ is a natural
isomorphism, the two triangles in the first diagram in (iii) show that F preserves both the
left and the right classes. If ρ is the identity, the same triangles show that F preserves the
factorizations.

It is then straightforward to show that the 2-cells between (lax) morphisms of normal
pseudo-algebras for (−)→ are just the natural transformations, by uniqueness of liftings. □

Corollary 2.12 Fact and Fact lax are precisely the 2-categories (−)→-PsAlgps (respec-
tively, (−)→-PsAlg lax) of normal pseudo-algebras for (−)→ on Cat and pseudo morphisms
(respectively, lax morphisms) between them.

Proof This follows immediately from Proposition 2.11. □

The following result will be needed to define double orthogonal factorization
systems.

Proposition 2.13 The 2-categories Fact ,Fact lax, and Fact colax have all pullbacks of strict
morphisms.

Proof Let A ,B ,C be categories equipped with orthogonal factorization systems, and strict
morphisms F : A → C and G : B → C . We show that the pullback category A×C B admits an
orthogonal factorization system, and that the associated projections and the unique arrows
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determined by its universal property are factorization-preserving. Additionally, when working
in Fact lax or Factps, we show that the induced pullback maps are respectively strict or lax.
Denote the factorization systems on A and B by (L1,R1) and (L2 ,R2) respectively. We form
a factorization system on A ×C B whose classes are given by:

(L⋆,R ⋆) = (L1 × L2,R1 × R2)

For a morphism (f, g) : (A,B)→ (A′, B′) in A ×C B we choose the factorization:

(A,B) (A′, B′)

(Im(f), Im(g))

(f,g)

(ℓf ,ℓg) (rf ,rg)

where f = rf ◦ ℓf and g = rg ◦ ℓg are the factorizations of f , g in A , and B respectively. Note
that this is well-defined because F and G are strict morphisms between categories with an
OFS. Because L1 and L2 are closed under composition, so is L⋆. Likewise, by the fact that
L1 and L2 contain all isomorphisms, L⋆ does as well. An identical argument holds for R ⋆,
therefore, (L⋆,R ⋆) is a factorization system. We now show orthogonality. Given a diagram
in A ×C B of the form:

(A,B) (A′, B′)

(C,D) (C′, D′)

(f,f ′)

(u,u′) (v,v′)

(g,g′)

with (u, u′) ∈ L⋆ and (v, v′) ∈ R ⋆, consider the following square in A :

A A′

C C′

f

u v

g

We have u ∈ L1, v ∈ R1, so by orthogonality there exists a unique morphism e : C → A′

making the following commute:

A A′

C C′

f

u v
e

g

Applying an identical argument to the square likewise constructed in B yields e′ : D → B′

satisfying a similar condition. Furthermore, F (e) and G(e′) are both the unique diagonal
arrow in the following diagram in C,

FA FA′ GB GB′

FC FC′ GD GD′

Ff

Fu Fv

Gf ′

Gu′ Gv′

Fg Gg′

=

Hence, F (e) = G(e′) and (e, e′) is a well-defined arrow in the pullback category. Now,
(e, e′) is the unique arrow making the following diagram commute:
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(A,B) (A′, B′)

(C,D) (C′, D′)

(f,f ′)

(u,u′) (v,v′)
(e,e′)

(g,g′)

This yields orthogonality of the factorization system (L⋆,R ⋆) on A ×C B . With this estab-
lished, we now show that the induced pullback maps satisfy the relevant properties for
Fact ,Fact lax,Fact colax.

Consider the projection map P1 : A×C B → A . For (ℓf , ℓg) ∈ L⋆, we have P1(ℓf , ℓg) = ℓf ,
hence P1 preserves the left class, and likewise for the right class. Therefore, P1 is a mor-
phism of categories equipped with a factorization system, as in Definition 2.8. An analogous
argument applies to P2.

Suppose that F ′ : D → A , and G′ : D → B are lax morphisms such that F ◦F ′ = G ◦G′.
By the universal property of pullbacks, there exists a unique I : D → A ×C B such that
F ′ = P1 ◦ I and G′ = P2 ◦ I. Explicitly, I maps an object D ∈ D to (F ′(D), G′(D)), and a
morphism g : D → D′ to (F ′(f), G′(f)).

If F ′ and G′ both preserve right classes, and u ∈ R , we have F ′(u) ∈ R1, G
′(u) ∈ R2,

hence (F ′(u), G′(u)) ∈ R ⋆. Thus, I is a lax morphism of categories with an OFS. If F ′ and
G′ both preserve the left class as well, an identical argument shows that I preserves the left
class, so I is a morphism of categories with an OFS. Hence, the pullback morphisms will be
strict, lax, or colax as required.

When F ′ and G′ are strict, let u be any morphism u in D, with chosen factorization
u = ru ◦ ℓu. Since P1 and P2 are strict morphisms of categories with an OFS, I(u) in
A ×C B factors as (F ′(u), G′(u)) = (F ′(ru), G

′(ru)) ◦ (F ′(ℓu), G
′(ℓu)); therefore, I preserves

factorizations strictly.
Because Cat admits 2-pullbacks, and 2-cells in Fact and Fact lax are ordinary natural

transformations, the relevant 2-dimensional universal properties are satisfied.
We have shown that A ×C B admits an orthogonal factorization system. Furthermore,

all morphisms induced by the pullback are appropriately strict, lax, or colax. Therefore,
pullbacks of strict morphisms exist in Fact ,Fact lax, and Fact colax. □

3 Double factorization systems

In this section, we propose our notion of double orthogonal factorization system. We
first present some motivating examples that led us to this notion. We observe that
some examples are more lax than others, and then focus primarily on two cases of
double orthogonal factorization systems: the lax and the pseudo case. As an extension
to what has been discussed in the previous section, one may also develop strict and
colax versions of our theory.

We define double orthogonal factorization systems with an approach of internal
category theory. We then explicitly describe them in terms of compatible orthogonal
factorization systems on the arrows and the double cells of a double category. In
Section 4, we will prove monadicity results for double orthogonal factorization systems,
justifying our notions.

12



3.1 Motivating Examples

Example 3.1 (The quartet double category on C, Sq(C)) For any category C, the double
category Sq(C), introduced by Ehresmann in his original work on double categories [? ], has
the same objects as C, both the arrows and the proarrows of Sq(C) are the arrows of C, and
the double cells are the commutative squares in C. When C is a category with an OFS (L,R),
we can lift the factorization structure on the arrows of Sq(C), here drawn horizontally, to a
factorization structure on the double cells of Sq(C) as follows.

Given any cell α of Sq(C) (which is completely determined by its boundary arrows), we
factor the (horizontal) arrows in its boundary as f = rf ◦ ℓf and g = rg ◦ ℓg according to the
factorization system on C. By the functoriality of the factorization system there is a unique
arrow q as in the following diagram.

A B A Im(f) B

C D C Im(g) D

f

u v

ℓf

u

rf

q v

g ℓg rg

= (2)

This shows that α factors into a horizontal (arrow-direction) composition of a cell lα with
(horizontal) arrows in L, followed by a cell rα with (horizontal) arrows from R. Hence, Sq(C)
has a factorization system (L′,R′) on its double cells where the left class L′ consists of cells
with morphisms from L as arrows and the right class R′ consists of cells with morphisms from
R as arrows. Both classes of cells are closed under horizontal composition. It is not hard to
show that the factorization system on the double cells is orthogonal as factorization system
on the category with vertical arrows as objects and double cells as arrows (using horizontal
composition).

Thus, we have an OFS (L,R) on the category of arrows Sq(C)0 and an OFS (L′,R′) on
the category of double cells Sq(C)1. We will now investigate how these factorization systems
interact with the structure of the double category. First note that the source, target and unit
morphisms preserve the factorizations, so they are strict morphisms of categories with an
OFS.

The vertical composition of two cells factors as follows:

A B A Im(f) B

C D C D

E F E Im(g) F

f

g
=

h

α

β

ℓβ⊗α rβ⊗α

where the center arrow exists by functoriality of the OFS on C . On the other hand, the
composition of the factorizations of both cells is given by:

A B A Im(f) B

C D C Im(g) D

E F E Im(h) F

f

g
=

h

lα rα

lβ rβ

α

β

13



The equalities lβ⊗α = lβ ⊗ eα and rβ⊗α = rβ ⊗ rα hold by uniqueness of the middle
arrow, which is a consequence of functoriality of the OFS. It follows that the composition of
the codomains of lβ and lα is equal to the the codomain of the composition of lβ⊗α.

Hence, the double category Sq(C) has a factorization system (L′,R′) on its double cells,
such that L′ and R′ are closed under vertical composition and furthermore, with the chosen
factorization for cells indicated in diagram (2), all structure arrows are strict morphisms
between categories with an OFS.

Remark 3.2 In our first example, all structure maps preserve the factorization sys-
tems strictly. The next example presents a factorization system on Span(C) where vertical
composition only preserves the right class. However, source, target and unit arrows are strict.

Example 3.3 (The span double category on C, Span(C)) Let C be a category with all
pullbacks and an OFS (L,R) with chosen factorizations,

(A B) (A Im(f) B)
f

=
ℓf rf

The double category Span(C) has morphisms in C as arrows and spans of C as proarrows
(proarrow composition is through chosen pullbacks); further, a double cell is defined by an
arrow from the apex of its domain span to the apex of its codomain making both squares
commute as in the following diagram.

A C

X Y

B D

f

α

g

Since C has an OFS, any cell in Span(C) can be factorized in the following manner.

A C A Im(f) C

X Y X Im(α) Y

B D B Im(g) D

f ℓf rf

α =
ℓα rα

g ℓg rg

giving rise to the factorization system on Span(C)1 where cells are in the left class L′ when all
three horizontal arrows f , g, and α are in L, and cells are in the right class R′ if all three of
these arrows are in R. It is clear that both classes of this system are closed under horizontal
composition. It is also clear that the source, target and units functors preserve the chosen
factorizations.

We now show that the right class R′ is closed under vertical composition. Let θ and ψ be
vertically composable double cells in the right class. Composing them yields the following.

14



A A′

X Y

X ×B X ′ B B′ Y ×B′ Y ′

X ′ Y ′

C C′

f

θ

p1

⌟

q

p2

g

p′1

⌟

p′2ψ

h

We need to show that the center arrow q : X ×B X ′ → Y ×B′ Y ′ induced by pullback
is also in R. To this end, we will show that it satisfies the left lifting property with respect
to any morphism in L. Suppose we have any morphism e : R ↠ S in L which is part of a
commutative square on the left, as in the following diagram:

R X ×B X ′ X ′

X B

S Y ×B′ Y ′ Y ′

Y B′

e

⌟

q

ψ

θ
g

∃!r

⌟

We wish to show that there exists a unique r : S → X ×B X ′ giving us two commutative
triangles to make up the square. By lifting e against θ, g, and ψ (with squares formed by
composing upper segments of the diagram appropriately), we obtain unique morphisms f1, f2,
and f3 as in the following diagram,

R X ′ R B R X

S Y ′ S B′ S Y

e ψ e g e θ
f1 f2 f3

Uniqueness of each lifting, along with the pullback’s universal property, guarantees a unique
r filling the left square as desired.

S

X ×B X ′ X ′

X B

r
f1

f3 ⌟

Thus, q is right-orthogonal to any map in the left class L, so q is in the right class R.
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We show in Example 3.5 that vertical composition does not preserve the left class of cells,
L′ in this case.

Example 3.4 [The double category Rel(C) of relations on any regular category C]
Let C be a regular category. Then the canonical factorization system on C has regular

epimorphisms as its left class and monomorphisms as its right class. We assume again that
a factorization f = rf ◦ ℓf has been chosen for each arrow f in C. The double category of
relations on C has morphisms of C as arrows and relations in C as proarrows. This means
that a proarrow R from X to Y is given by a monic arrow R ↪→ X × Y in C. A double cell

X X ′

Y Y ′

e0

Rp R′p
e1

θ

in Rel(C) is given by an arrow θ : R→ R′ in C such that the following diagram commutes in C:

R X × Y

R′ X ′ × Y ′

θ e0×e1

We introduce a factorization system for cells in Rel(C) as follows:
• the left class consists of cells with regular epimorphisms as arrow domain and codomain

and a regular epimorphism for the arrow θ between the relations.

X X ′ R X × Y

Y Y ′ R′ X ′ × Y ′

e0

Rp R′p θ e0×e1

e1

θ corresponds to

• the right class consists of cells with monomorphisms as arrow domain and codomain
and a monomorphisms for the arrow θ between the relations.

X X ′ R X × Y

Y Y ′ R′ X ′ × Y ′

m0

Rp R′p θ m0×m1

m1

θ corresponds to

We now verify that the right class of this factorization system is closed under vertical
composition. Given cells θ and α in Rel(C), recall that their vertical composition corresponds
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to an arrow θ ⊗ α in C:

X X ′

X X ′ R⊗ S X × Z

Y Y ′

Z Z′ R′ ⊗ S′ X ′ × Z′

Z Z′

f

Rp R′p f

R⊗S p R′⊗S′p θ⊗α f×h
g

S p S′p

h

h

θ

θ⊗α corresponds to

α

=

A morphism t : R ×Y S → X × Z is obtained by the universal property of X × Z
via the diagram:

R X × Y X

R×Y S X × Z

S Y × Z Z

∃!t

The image of t (from the canonical OFS on C ) gives a subobject R⊗ S of X ×Z:

R×Y S R⊗ S X × Z
ℓt

t

rt

Furthermore, by the universal property of the rightmost pullback, we have a
morphism u : R×Y S → R′ ×Y ′ S′:

R R′

X × Z R×Y S R′ ×Y ′ S′ X ′ × Z ′

S S′

θ

t
⌟

u

t′

α

⌟

We now examine factorizations of cells in Rel(C). We can write any double cell α
as a morphism of spans:
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R X × Y X X ′

R S

S X ′ × Y ′ Y Y ′

m1

α f×g

f

α

m2 g

⇝

Applying the results from 3.3, we obtain a factorization

X Im(f) X ′

R Im(α) S

Y Im(g) Y ′

lf rf

lα

f̄

rα

ḡ

lg rg

where f̄ , ḡ exist by functoriality of the OFS on C . This yields double cells:

R X × Y Im(α) Im(f)× Im(g)

Im(α) Im(f)× Im(g) S X ′ × Y ′

lα lf×lg rα rf×rg

Hence, we can write any double cell in Rel(C) as a cell whose arrows are in the
right class of C , followed by a cell whose arrows are in the left class. Vertical closure
of the right class follows the same argument as in 3.3. The left class, however, is not
vertically closed, as we shall demonstrate later.

Next, we examine orthogonality. Specifically, we show that there exists v = θ ⊗
α : R⊗ S → R′ ⊗ S′ which makes the following commute:

R⊗ S X × Z

R′ ⊗ S′ X ′ × Z ′

rt

v f×h

rt′

Consider the diagram:

R×Y S R′ ×′
Y S′ R′ ⊗ S′

R⊗ S X × Z X ′ × Z ′

u

ℓt

ℓt′

rt′
v

rt f×h
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By orthogonality of the factorization system on C , there exists a unique v commut-
ing with the upper and lower triangles as required. Furthermore, v is a monomorphism
because it is postcomposed with a monomorphism. Thus, the right class of cells we
have described in Rel(C ) is closed under vertical composition.

It is not always the case that the vertical composition preserves the left class, as
per the next example.

Example 3.5 Consider the following diagram of double cells in Span(C).

{s0} {∗} {s0} {∗}

{(s0, t0)} {∗}

{t0, t1} {∗} ∅ {(∗, ∗)}

{(t1, s1)} {∗}

{s1} {∗} {s1} {∗}

π1

π2

π1

π2

On the left side we have two vertically composable cells that are both in the left class
L′. However, their vertical composition, given on the right is clearly not in L′: the arrow
∅→ {(∗, ∗)} is clearly not surjective.

Example 3.6 (The cospan double category on C, Cospan(C)). Let C be a category with
pushouts and an orthogonal factorization system (L,R). Consider the double category
Cospan(C), whose cells are given by commutative diagrams of the form:

A C

X Y

B D

f

θ

g

Using the underlying OFS on C, we can factorize any cell in the following manner, with
f̄ , ḡ existing by functoriality of the OFS on C:

A C A Im(f) C

X Y X Im(θ) Y

B D B Im(g) D

f lf rf

f̄

θ =
lθ rθ

g lg

ḡ

rg
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Using a dual argument to the case of spans, it can be shown that the left class of double
cells (whose arrows are in R) is closed under vertical composition. However, the right class
need not be closed, as the following example in Cospan(Set ) shall demonstrate. Recall that

the pushout of A
f←− X g−→ B in Set is given by A ⊔B/ ∼, where ⊔ is disjoint union, and

∀x ∈ X, (f(x), A) ∼ (g(x), B)

Consider the vertical composition of cells θ, φ (where P and Q are pushouts):

X X′

A = {x, y} {x, y}

P = {xA ∼ xB , yA ∼ yB , zB} {x, y} {x, y, z} {xA ∼ xB ∼ yA ∼ yB , zB} = Q

B = {x, y, z} {x, y, z}

Z Z′

id

⌟

f′(x)=x,

f′(y)=f′(z)=y

g′(x)=g′(y)=x

g′(z)=y

⌟

id

There exists a morphism from P to Q induced by the pushout’s universal property. However,
this morphism cannot be injective, as P is larger than Q. Therefore, the vertical composition
of φ and θ does not have a monomorphism as its center arrow, and is not in the right class.

Example 3.7 [The double category of paths in C] For a category C, we define the double
category Path C, following the construction and notation in [? ], such that the objects are
the objects of C, horizontal arrows are morphisms of C, vertical arrows are paths in C, i.e.,
composable sequences of arrows,

A0 A1 A2 · · · Am−1 Am
f1 f2 fm

We denote such a path by ⟨fi⟩1≤i≤m. To define the double cells in this double category, we
will use the following notation for arrows in a path: For any i, j ∈ {1, · · · ,m}, such that
i ≤ j, we denote the composition of the arrows in the path between Ai and Aj by

f ij =

{
fjfj−1 · · · fi+1 if i < j

idAi
if i = j

(3)

We will also write [m+ 1] for the set {0, 1, . . . ,m}.
A double cell with boundary

A0 B0

Am Bn

k

⟨fi⟩1≤i≤m ⟨gj⟩1≤j≤n

ℓ

is then given by a pair (φ, ⟨hi⟩0≤i≤m) where

φ : [m+ 1]→ [n+ 1]
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is an order preserving function with φ(0) = 0 and φ(m) = n, and the hi : Ai → Bφ(i) are
morphisms of C such that h0 = k, hm = ℓ and for every i ∈ [m+ 1], the diagram

Ai−1 Bφ(i−1)

Ai Bφ(i)

hi−1

fi g
φ(i−1)

φ(i)=

hi

commutes. These double cells are called fences in [? ]. An example of a double cell of Path C
is given by,

A0 B0

A1 B1

A2 B2

A3 B3

B4

h0

f1

=

g1
h1

f2 g2

=

h2

f3 g3

h3

g4

=

(4)

Vertical composition of these cells is defined by concatenation. Horizontal composition
is defined by following the threads of the cross arrows and composing: (ψ, kj)(φ, hi) =
(ψφ, kφ(i)hi). It is straightforward to check that the double category Path C is strict.

Suppose that the category C has an OFS (L,R) and (φ, ⟨hi⟩1≤i≤m) is a fence; i.e., a
double cell in Path C. We may than choose to take the chosen factorization in (L,R) for each
of the cross arrows hi, hi = rhi

◦ ℓhi
. We can extend this to a factorization of the fence by

observing that for all i ∈ {1, · · · ,m}, the commuting squares making up the fence can be
factored as indicated (see example 3.1):

Ai−1 Bφ(i−1) Ai−1 Im(hi−1) Bφ(i−1)

=

Ai Bφ(i) Ai Im(hi) Bφ(i)

hi−1

fi g
φ(i−1)

φ(i)

lhi−1

fi

rhi−1

ui g
φ(i−1)

φ(i)=

hi

=

lhi

=

rhi

The morphisms ui exist and are unique because the factorisation (L,R) is orthogonal.
Hence, every double cell (φ, ⟨hi⟩0≤i≤m) factors as the composition of a (left) double cell
(φl = id[m+1], ⟨lhi

⟩1≤i≤m) from ⟨fi⟩1≤i≤m to ⟨ui⟩1≤i≤m and a (right) double cell (φr =
φ, ⟨rhi

⟩0≤i≤m) from ⟨ui⟩1≤i≤m to ⟨gi⟩1≤i≤n. For example, the double cell 4 factorises as
follows.
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A0 Im(h0) B0

A1 Im(h1) B1

A2 Im(h2) B2

A3 Im(h3) B3

B4

lh0

f1

rh0

u1 g1
lh1

f2

rh1

u2 g2

lh2
f3

rh2

u3 g3

lh3

rh3

g4

Note that double cells where the indexing map φ is the identity are called neat fences in [? ].
This leads us to introduce the factorization system (L′,R′) on the double cells of Path C

where L′ is the class of neat fences (id[m+1], ⟨lhi
⟩0≤i≤m) with cross arrows hi ∈ L and R′ is

the class of fences (φ, ⟨lhi
⟩0≤i≤m) where all hi are in R. In short, L′ consists of neat L-fences

and R′ consists of arbitrary R-fences. It is clear that both L′ and R′ contain all horizontally
invertible double cells, so in order to prove that (L′,R′) is an OFS, it is sufficient to check
the unique lifting property. So consider a horizontal commutative square of fences,

⟨fi⟩1≤i≤m ⟨gi⟩1≤i≤n

⟨f ′i⟩1≤i≤m ⟨g′i⟩1≤i≤n′

(φ,⟨hi⟩0≤i≤m)

(id[m+1],⟨ℓi⟩0≤i≤m) (ψ,⟨ri⟩0≤i≤n)D

(φ′,⟨h′
i⟩0≤i≤m)

(5)

where the arrows ℓi in the left fence are in L and the arrows ri in the right fence are in R. We
want to show that there is a unique fence D providing the diagonal lifting. First note that by
the commutativity of the square, we have that for each i ∈ [m + 1], there is a commutative
square in C,

Ai Bφ(i)

A′
i B′

φ′(i)

hi

ℓi rφ(i)

di

h′
i

(6)

Since ℓi ∈ L and rφ(i) ∈ R, there is a unique arrow di ∈ C making this diagram commute.
Now these arrows together define a fence D = (φ, ⟨di⟩0≤i≤m) which forms a diagonal lifting
for diagram (5). To show its uniqueness, let D′ = (θ, ⟨d′i⟩0≤i≤m) be another lifting for this
diagram. This implies that θ = φ, because the top triangle commutes. So each arrow d′i is of
the form d′i : A

′
i → Bφ(i) and the way composition of fences is defined this implies that d′i is

a lifting for (6). Hence, di = d′i and hence D′ = D: (5) has a unique diagonal lifting and we
conclude that (L′,R′) is an OFS for the double cells of Path C.

Since vertical composition is defined by concatenation, it is clear that it preserves both the
left and the right class of cells in this case. Furthermore, it preserves the chosen factorizations,
so it is a strict map of orthogonal factorization systems.
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Remark 3.8 We have presented examples of cell-wise factorization systems, suitably com-
patible with a factorization system on the arrows, on three common families of double
categories.

1. Note that in all cases the source, target and unit functors are strict morphisms of
categories with an OFS. In light of Proposition 2.13 we will see that this is essential
in both the internal category and the monadic approach toward double factorization
systems.

2. Vertical composition can be allowed to be a strict, lax, colax or pseudo morphism of
categories with an OFS. We have seen here an example of two double categories with a
strict vertical composition morphisms (quartets and paths), two with a lax vertical com-
position (the examples of relations and spans) and one with a colax vertical composition
(the example of copans).

3. These examples also lead us to ask whether there may be more than one factorization
system on the double cells of a double category that ‘fits’ with a given OFS on the
arrows. We will discuss this in Proposition 5.3 and Theorem 5.4. In particular we will
see that Rel(C) has another DOFS with the same OFS on the arrows, and Span(C) has
at least three other factorization systems and we will discuss the ways the factorization
systems are related to each other.

3.2 Internal definition

We will define the notion of a double orthogonal factorization system (DOFS) (respec-
tively a lax DOFS) as a normal pseudo-category internal to Fact (respectively
Fact lax), with strict source, target and identity assignment. (Note that one can define
a colax DOFS in a similar way, but we will leave this to the reader.) Recall from
Section 2 the definition of these 2-categories of categories with an orthogonal factor-
ization system, and the result (Proposition 2.13) that they have the pullbacks we need
below.

We first recall the definition of pseudo-category internal to a 2-category from [? ].

Definition 3.9 Let K be a 2-category where all pullbacks depicted below exist. A pseudo-
category C internal to K consists of objects C0 and C1 of K (called the object of objects and
the object of arrows, respectively) together with morphisms src, tgt, i and ⊗ (source, target,
identity and composition, respectively) as below

C1 ×C0
C1 C1 C0

⊗ src

tgt
i

and invertible 2-cells α, λ, and ρ:

C1 ×C0
C1 ×C0

C1 C1 ×C0
C1

C1 ×C0
C1 C1

1×⊗

⊗×1
α ⊗

⊗

C1 C1 ×C0
C1 C1

C1

⟨i,1⟩

idC1

⊗

⟨1,i⟩

idC1

ρλ
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The above cells are further required to satisfy the usual coherence conditions, along with
the usual equalities for arrow composition (with several weakened by isomorphisms satisfying
further coherence conditions). These requirements are fully listed in [? ]. When the 2-cells
α, λ, and ρ are identities, we say that the pseudo-category internal to K is strict, or a category
internal to K . We will assume pseudo-categories to be normal; i.e, with λ and ρ identities.

In this paper we will work with a 2-category of pseudo-categories internal to a 2-
category K . The morphisms will be the internal lax functors as described in the next
definition.

Definition 3.10 Suppose that C,D are normal pseudo-categories internal to a 2-category
K . An internal lax functor F : C→ D consists of the following:

• Morphisms F0 : C0 → D0 and F1 : C1 → D1 in K ;

• 2-Cells φ, θ in K as follows:

C1 ×C0
C1 C1 C0 C1

D1 ×D0
D1 D1 D0 D1

⊗

F1×F0
F1 F1

i

F0 F1

⊗ i

φ θ

satisfying several coherence conditions (see [? ]).

When θ is an identity, F is said to be unitary or normal. When φ and θ are
isomorphisms, F is said to be a pseudofunctor. Oplax notions of internal functors are
obtained by dualizing appropriately.

Definition 3.11 Given lax internal functors F,G : C→ D, an internal, or levelwise, natural
transformation η : F ⇒ G consists of 2-cells η0 : F0 ⇒ G0, η1 : F1 ⇒ G1 satisfying the
coherence conditions in Section 3.2 of [? ].

Notation 3.12 Given a 2-category K , we denote by PsCatps(K ) (respectively, PsCat lax(K ),
PsCatopl(K )) the 2-category of normal (i.e, unitary) pseudo-categories internal to K , nor-
mal internal pseudo (respectively, normal lax, normal oplax) functors and internal natural
transformations. It is straightforward to show that these are indeed 2-categories.

Definition 3.13 A strict (resp. lax, resp. colax) double orthogonal factorization system
(DOFS) is a pseudo-category internal to the 2-category Fact (resp. Fact lax; resp. Fact colax),
such that src, tgt and i are strict morphisms of categories with an orthogonal factorization
system.

Remark 3.14 Thus, a (lax) DOFS (L,R) on a double category C amounts to an OFS
(L0,R0) for horizontal arrows (with chosen factorizations), along with left and right classes
of double cells which form an OFS (L1,R1) with respect to horizontal composition of cells
(viewed as arrows of C1 in 3.13) and chosen factorizations of the cells. These factorization
systems are compatible, in the sense that source and target functors preserve the chosen
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factorizations. The identity cell on a horizontal arrow of the left class (respectively, right
class) is in the left class (respectively, right class) and the chosen factorizations on identity
cells for horizontal arrows consist of the identity cells for the chosen factorization of the
horizontal arrow. In a strict DOFS, vertical composition preserves the chosen factorizations
of the cells; for a pseudo DOFS, both classes of cells are closed under vertical composition; in
the lax case, only the right class is vertically closed, and in the colax case only the left class
is closed. To make this more explicit, we offer a cell-wise definition of a DOFS, and show
that it is equivalent to the internal one.

Proposition 3.15 A DOFS is equivalent to a double category D with a pair of classes of
cells (L,R) satisfying:

1. L and R are closed under horizontal composition, and contain all the horizontally
invertible cells;

2. L and R are closed under vertical composition;

3. for any cell in either class, the source and target unit cells are also contained in the
respective class; e.g., if α ∈ L, then i(src(α)) ∈ L.

4. For every cell φ there are chosen cells ℓφ ∈ L and rφ ∈ R such that

(a)
• • • • •

• • • • •

p p p p pφ = ℓφ rφ

(b) If two cells share the same source (respectively, target), then the corresponding
chosen cells have the same source (respectively, target); e.g., if src(α) = src(β) then
src(ℓα) = src(ℓβ).

(c) The chosen cells of a unit cell are again unit cells.

5. (the lifting property) for any equation

• • • • • •

• • • • • •

p p p p p pℓ φ = ψ r

with ℓ ∈ L and r ∈ R, there is a unique cell θ that satisfies the two equations

• • • • • • • • • •

• • • • • • • • • •

p p p p p p p p p pψ = ℓ θ and φ = θ r

In the particular case that the cells ℓ, φ, ψ, r are unit cells, then θ is also a unit cell.

A lax DOFS is equivalent to a double category D with a pair of classes (L,R) satisfying
the above conditions, but replacing (2) by:

2’ R is closed under vertical composition.

A colax DOFS is equivalent to a double category D with a pair of classes (L,R) satisfying
the above conditions, but replacing (2) by:

2” L is closed under vertical composition.
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Proof We first show that a double category D with a DOFS (L,R) satisfies the conditions of
this Proposition, by taking L := L1 and R := R1.

Condition (1): Both of L and R are closed under horizontal composition and contain the
horizontally invertible cells by assumption.

Condition (2): This follows from the fact that the vertical composition is required to be
a morphism of categories with orthogonal factorization systems.

Condition (3): This is a consequence of src, tgt, and i being morphisms of categories with
orthogonal factorization systems.

Condition (4): Here we use the chosen factorization of the cells as a cells in R after a cell
in L. This is expressed in (4)(a). Condition (4)(b) follows from the fact that src and tgt are
strict morphisms of categories with orthogonal factorization systems. Condition (4)(c) follows
from thet fact that i is a strict morphism of categories with orthogonal factorization systems.

Condition (5): This follows from the lifting property on both orthogonal factorization
systems (L1,R1) and (L0,R0).

Now, a double category D with a pair of classes of cells (L,R) satisfying the conditions of
the proposition gives rise to: the classes L0 and R0 of morphisms in D0 that consist of the
horizontal morphisms whose associated unit cells lie in L and R, respectively; and the classes
L1 := L and R1 := R, of D1.

The pair (L1,R1) is a factorization system for D1 because L and R are both closed under
horizontal composition, both have all horizontally invertible cells, condition (4)(a) gives the
chosen factorizations and condition (5) gives the lifting property.

We now show that the pair (L0,R0) is an orthogonal factorization system in D0. Indeed,
from the fact that horizontal composition of unit cells is again a unit, and L and R are closed
under horizontal composition, it follows that L0 and R0 are closed under composition. They
contain all isomorphisms in D0 because L and R contain all horizontally invertible cells. Every
morphism f in D0 factors as a morphism in L0 followed by morphism in R0 by conditions
(4)(a) and (4)(c), and we take these factorizations as the chosen ones. The lifting property
in (L0,R0) follows from the last part of condition (5).

The functors src and tgt are strict morphisms of categories with orthogonal factoriza-
tion systems by condition (3) and condition (4)(b). The unit functor i is a strict morphism
of categories with orthogonal factorization systems by definition of the pairs (L0,R0) and
(L1,R1) and conditions (4)(b) and (4)(c) and our choice of factorizations. The vertical com-
position is a morphism of categories with orthogonal factorization systems by condition (2).
The proof of the equivalence for the lax (respectively, colax) DOFS is exactly the same, but
noticing that axiom (2’) (respectively, axiom (2”)) implies the vertical composition is a lax
(respectively, colax) morphism of categories with orthogonal factorization system. □

We now present a result giving an equivalent formulation of Condition (5). This
result will serve as a supporting tool in examples in Subsection 3.3.

Proposition 3.16 Condition (5) in Proposition 3.15 is equivalent to the following state-
ments:

5’ For any equation

• • • • • •

• • • • • •

p p p p p pℓ r = ℓ′ r′
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with ℓ, ℓ′ ∈ L and r, r′ ∈ R, there is a unique horizontally invertible cell θ that satisfies
the following two equations

• • • • • • • • • •

• • • • • • • • • •

p

∼=

p p p p

∼=

p p p p p
∼= ∼=

ℓ θ = ℓ′ and θ r′ = r

When ℓ, r, ℓ′, r′ are unit cells, θ is also a unit cell.

Proof The equivalence follows from the analogous versions on orthogonal factorization
systems in one-dimensional categories. □

The following observation shows that the cell θ in Proposition 3.16 is a globular
cell if the horizontal sources and targets coincide in two different factorizations.

Observation 3.17 In Proposition 3.16, consider the particular case

• • • • • •

• • • • • •

e

p

m

p p

e

p

m
p p

e′ m′ e′ m′

ℓ r = ℓ′ r′

where ℓ and ℓ′ have the same source and target, and r and r′ have the same source and target.
Now consider the equations src(θ) ◦ e = e and m ◦ src(θ) = m. The orthogonal property in
the orthogonal factorization system in D0 implies that src(θ) = id. Analogously tgt(θ) = id.
This asserts that the unique cell arising from two different factorizations of the same cell,
with the same sources and targets, is horizontally globular.

3.3 Examples of DOFS on double categories constructed from
2-categories

In this subsection, we present an example of a DOFS in the double category of quintets
on Cat , together with an example in the double category of paths over the double
category of quintets on a 2-category B.

Example 3.18 (The quintet double category on the 2-category Cat , Q(Cat )). Our aim is
that the class L that consists of cells with final functors in their horizontal arrows and the
class R that consists of cells that are natural isomorphism with discrete fibrations in their
horizontal arrows is a DOFS in Cat . First of all, final functors and discrete fibrations form
an OFS in the category of categories [? ]. Thanks to that fact, it is clear that both L and R
are closed under horizontal composition. Also, by definition, the classes L and R, contain all
the horizontally invertible cells. Now, we want to show that the axioms (1), (2), (3), (4) in
Definition 3.15 and axiom (5’) in Proposition 3.16 hold for L and R. It is clear that axioms
(1), (3), and (4) hold. We will focus on axiom (2) and axiom (5’).

Axiom (2). We wish to factor an arbitrary cell α into two cells

A B A XF B

C D D XG D

F

U V

ℓ1

U

r1

T Vα

G

λ

ℓ2

ρ

r2

=

27



where λ ∈ L and ρ ∈ R. Step 1, we chose ℓ1, r1, ℓ2, r2 using the comprehensive factorization
system as in [? ] or on page 74 of [? ]. Step 2, we define the functor T as follows: For an
object (b, [h : Fa → b]) in XF , T (b, [h]) := (V b, [V h ◦ αa]) in XG, and for a morphism
t in XF , T (t) := V (t). Step 3, we define λ and ρ. Observe that for an object a ∈ A,
ℓ2U(a) = (GUa, [id]), and Tℓ1(a) = T (Fa, [id]) = (V Fa, [αa]). We define λa by the morphism
αa : (GUA, [id])→ (V Fa, [αa]). The natural isomorphisms ρ(b,[h]) are defined by the identity
idb : r2T (b, [h]) = V b→ V r1(b, [h]) = V b. It is clear that λ ∈ L, ρ ∈ R, and α = λ ∗ ρ.

Axiom (5’). Assume there are two different ways to factor a cell

A X B A X ′ B

C Y D C Y ′ D

ℓ1

U

r1

W V

ℓ′1

U

r′1

W ′ Vλ

ℓ2

ρ

r2

λ′

ℓ′2

ρ′

r′2

=

We wish to define a horizontally invertible cell

X X ′

Y Y ′

q1

W W ′θ

q2

such that θ ∗ λ = λ′ and ρ′ ∗ θ = ρ. By the orthogonal property of an OFS, there exist
isomorphisms q1 : X → X ′ and q2 : Y → Y ′ that make the following diagrams commute

A X B C Y D

X ′ Y ′

ℓ1

ℓ′1

r1

q1 ,

ℓ2

ℓ′2

r2

q2

r′1 r′2

Finally, we wish to find a natural isomorphisms θ : q2W →W ′q1. First, observe that

r′2q2W = r2W V r1 = V r′1q1 r′2W
′q1

ρ ρ′−1

From the fact that r′2 is a discrete fibration, there is a unique cartesian lifting θ : q2W →
W ′q1 of ρ′−1ρ. It is a natural isomorphism because ρ′ and ρ are natural isomorphisms and
r′2 is a discrete fibration. Now, by definition, r′2(θ) = ρ′−1ρ, which implies that ρ′r′2(θ) = ρ
i.e. ρ′ ∗ θ = ρ. Finally, we wish to prove that θ ∗ λ = λ′, i.e. θq2(λ) = λ′. We know that
ρr2(λ) = ρ ∗ λ = ρ′ ∗ λ′ = ρ′r′2(λ

′). Then, r′2(θ)r2(λ) = ρ′−1ρr2(λ) = r′2(λ
′). Again, since

r′2 is a discrete fibration, there exists a unique morphism s such that r′2(s) = r′2(λ). We
also have that ρρ′−1r′2(s) = r′2(λ

′), and by the cartesian property θs = λ′. Observe that
r′2q2(λ) = r2(λ), by definition of q2; then, by uniqueness of s, s = q2(λ), which concludes the
example.

Example 3.19 (The double category of paths in Q(B)) In Example 3.7 we describe a DOFS
in the double category of paths in a category C; we refer the reader to that example for a
clearer understanding of the notation. Here, we extend the DOFS to a more general setting.
For a 2-category B, the double category of paths PathQB in the double category of quintets
QB has the following structure: its objects are those of B; its horizontal arrows are the
1-morphisms in B; its vertical arrows are paths of 1-morphisms in B; and the cells

A0 B0

Am Bn

h0

⟨fi⟩0≤i≤m ⟨gj⟩0≤j≤n

hm

⟨αi⟩0≤i≤m
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are pairs (φ, ⟨αi⟩0≤i≤m, ), where φ : [m + 1] → [n + 1] is an order preserving function with
φ(0) = 0 and φ(m) = n; and for every i ∈ [m+ 1], αi is a 2-morphism in QB of the form

Ai−1 Bφ(i−1)

Ai Bφ(i)

hi−1

fi g
φ(i−1)

φ(i)
αi

hi

The cells αi are called fences. Vertical composition of cells is defined by concatenation, while
horizontal composition is induced by composition of 2-morphisms, following the threads of
the cross arrows.

Suppose that the 2-category B has a 2OFS (L,R) with a choice, and consider a cell
(φ, ⟨αi⟩0≤i≤m). Then, the fences αi factor as

Ai−1 Bi−1 Ai−1 Imhi−1 Bi−1

Ai Bi Ai Imhi Bi

hi−1

fi g
φ(i−1)

φ(i)

ℓhi−1

fi

rhi−1

ti g
φ(i−1)

φ(i)
αi

hi

ℓi

ℓhi

ri

rhi

=

where ri and ℓi are in the chosen 2-morphisms. This provides a factorization for the cell
(φ, ⟨αi⟩0≤i≤m). Now, we can introduce a double orthogonal factorization system (L,R) in
PathQB. The class L consists of the cells (id[m+1], ⟨ℓi⟩0≤i≤m), where the horizontal mor-
phisms in the fences ℓi are in the class L. Similarly, the class R consists of the cells
(φ, ⟨ri⟩0≤i≤m), where the horizontal morphisms in the fences ri are in the class R. Observe
that the fences in L and the fences in R are cells in QB, and recall that a 2OFS with a choice
in B corresponds to a DOFS in QB. Moreover, every cell in PathQB can be expressed as a
vertical composition of fences. These observations allow it to be derived that the pair (L,R)
satisfies the axioms in Proposition 3.15, and therefore constitutes a DOFS in the double
category PathQB.

Remark 3.20 It may be tempting to compare the DOFS on a double category of quintets
with the 2-dimensional OFS introduced by Stefan Milius [? , Definition 7.3]. However, the
goals of these two types of systems are different: our systems provide a notion of factorization
and hence an image for double cells, whereas the goal of Milius’ work is to provide a weakened
version of orthogonal factorization systems for 2-categories. It is not obvious how to construct
a left and right class of 2-cells from Milius’ concept. Also, the diagonal arrow goes in the
wrong direction to form the image of a 2-cell.

4 Monadicity of double factorization systems

In this section, we prove a monadicity result for double orthogonal factorization sys-
tems and for lax or colax double orthogonal factorization systems, achieving double
categorical generalizations of the fundamental monadicity result of Theorem 2.4. To
reach this, we first prove a conceptually important general monadicity result for cat-
egories internal to algebras, Theorem 4.2. This theorem is particularly helpful in our
double categorical context, but is more widely applicable.

We then merge the two flavours of DOFS together via F-category theory, also
known as enhanced 2-category theory (see [? ]). The right F -categorical monad to

29



consider to achieve our monadicity theorem is a generalization of the squaring 2-monad
on Cat to the double categorical setting.

The results of this section can be thought of as giving a monadic definition of (lax
or colax) double orthogonal factorization systems and showing that this definition is
equivalent to the internal one we presented in Section 3.

Aiming at the general monadicity theorem, we prove the following lemma. This is
a generalization of Proposition 2.13.

Lemma 4.1 Let K be a 2-category and let (T : K → K , η : Id =⇒ T, µ : T 2 =⇒ T )
be a 2-monad whose underlying 2-functor preserves pullbacks. The 2-category T -PsAlg lax

(respectively, T -PsAlgps) of normal pseudo-algebras and lax morphisms (respectively, pseudo
morphisms) between them has all pullbacks of strict morphisms along strict morphisms that
exist in K (and these pullback morphisms are again strict).

Proof Let (C0, Q0 : T (C0) → C0, αµ,0), (C1, Q1 : T (C1) → C1, αµ,1) and (C2, Q2 : T (C2) →
C2, αµ,2) be normal pseudo-algebras for T . Furthermore, let f : C1 → C0 and g : C2 → C0

be strict morphisms of normal pseudo-algebras, and assume that the pullback C1 ×C0
C2 of

f and g exists in K ,

C1 ×C0
C2 C1

C2 C0

⌟
π1

π2 f

g

We prove that (C1 ×C0
C2, Q1 ×Q0

Q2 : T (C1 ×C0
C2)→ C1 ×C0

C2, αµ,1 ×αµ,0 αµ,2) is the
pullback of f and g in T -PsAlg lax.

Since T preserves pullbacks, we can choose T (C1) ×T (C0) T (C2) to be T (C1 ×C0
C2).

Then the pullback square of C1 ×C0
C2 with its image under T , connected by Q0, Q1, Q2

induce a morphism Q1 ×Q0
Q2 : T (C1 ×C0

C2) → C1 ×C0
C2, by the universal property of

the pullback. Analogously, by the 2-dimensional universal property of the pullback, we can
induce an invertible 2-cell

T 2(C1 ×C0
C2) T (C1 ×C0

C2)

T (C1 ×C0
C2) C1 ×C0

C2

T (Q1×Q0
Q2)

µC1×C0
C2 Q1×Q0

Q2
αµ,1×αµ,0

αµ,2

Q1×Q0
Q2

again using that f and g are strict morphisms of normal pseudo-algebras. It is straightforward
to show that (C1 ×C0

C2, Q1 ×Q0
Q2 : T (C1 ×C0

C2) → C1 ×C0
C2, αµ,1 ×αµ,0 αµ,2) is a

normal pseudo-algebra for T . We then notice that π1 and π2 are strict morphisms of normal
pseudo-algebras.

Consider now (C3, Q3 : T (C3) → C3, αµ,3) a normal pseudo-algebras for T together

with lax morphisms (h, φh) : (C3, Q3, αµ,3) → (C1, Q1, αµ,1) and (k, φk) : (C3, Q3, αµ,3) →
(C2, Q2, αµ,2) between normal pseudo-algebras such that (f, id) ◦ (h, φh) = (g, id) ◦ (k, φk).
Then by the universal property of the pullback, these data induce both a morphism
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⟨h, k⟩ : C3 → C1 ×C0
C2 and a 2-cell

T (C3) T (C1 ×C0
C2)

C3 C1 ×C0
C2

T (⟨h,k⟩)

Q3 Q1×Q0
Q2

⟨φh,φk⟩

⟨h,k⟩

Notice that the morphism on top is indeed T (⟨h, k⟩) by the uniqueness part of the universal
property of the pullback. It is straightforward to check that (⟨h, k⟩, ⟨φh, φk⟩) is a lax mor-
phism of normal pseudo-algebras, and that it is the unique lax morphism that fulfills the
1-dimensional universal property of the pullback in T -PsAlg lax. Notice that if both φh and

φk are iso then also ⟨φh, φk⟩ is iso. So pseudo morphisms between normal pseudo-algebras
induce a pseudo morphism.

Taking then 2-cells σ : h =⇒ h′ and τ : k =⇒ k′ between lax morphisms of algebras such
that f ∗ σ = g ∗ τ , we can analogously induce a 2-cell ⟨σ, τ⟩ : ⟨h, k⟩ =⇒ ⟨h′, k′⟩ between lax
morphisms of algebras, which is straightforwardly shown to be the unique 2-cell that fulfills
the 2-dimensional universal property of the pullback in T -PsAlg lax. □

We now prove a general monadicity theorem which provides a way to extend a
2-monad on a 2-category K to canonical 2-monads on the 2-categories of categories
internal to K with either lax, oplax or pseudo functors, and shows how the 2-categories
of algebras for the latter are isomorphic to the corresponding 2-categories of internal
categories in algebras for the former. This will be particularly useful for us in the
context of double categories.

Theorem 4.2 Let K be a 2-category and let (T : K → K , η : Id =⇒ T, µ : T 2 =⇒ T ) be a
2-monad whose underlying 2-functor preserves pullbacks. Then T induces 2-monads

T opl : PsCatopl(K )→ PsCatopl(K )

Tps : PsCatps(K )→ PsCatps(K )

such that
T opl-PsAlg lax

∼= PsCatopls(T -PsAlg lax)

Tps-PsAlgps ∼= PsCatpss(T -PsAlgps)

where PsCatopls(T -PsAlg lax) (respectively, PsCatpss(T -PsAlgps)) is the full sub-2-category of
PsCatopl(T -PsAlg lax) (respectively, PsCatps(T -PsAlgps)) on those pseudo-categories whose
source, target and identity assignment are strict morphisms between normal pseudo-algebras.

Proof Given C a pseudo-category

C1 ×C0
C1 C1 C0

⊗ src

tgt
i

in K , we define T opl(C) to be the pseudo-category

T (C1 ×C0
C1) T (C1) T (C0)

T (⊗)
T (src)

T (tgt)

T (i)
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choosing T (C1)×T (C0) T (C1) to be T (C1 ×C0
C1) (and similarly with iterated pullbacks),

thanks to the fact that T preserves pullbacks. Its associator is just T (Φ), where Φ is the
associator of C. It is straightforward to show that this gives indeed a pseudo-category.
Given then a normal internal oplax functor (F0 : C0 → D0, F1 : C1 → D1, φ), we send it to
the normal internal oplax functor (T (F0), T (F1), T (φ)) : T opl(C) → T opl(D). The required
axioms are all images under T of the corresponding axioms for (F0, F1, φ). And given an
internal natural transformation (α0, α1) between normal internal oplax functors, we send it
to the internal natural transformation (T (α0), T (α1)). Again, all the required axioms are
images under T of the corresponding axioms for (α0, α1). It is straightforward to check that
T opl is a 2-functor.

We then define a unit η : Id =⇒ T opl and a multiplication µ : T
2
opl → T opl for T opl

as follows. Given C ∈ PsCatopl(K ), we define µC to be the normal internal strict functor

(µC0
: T 2(C0) → T (C0), µC1

: T 2(C1) → T (C1), id), thanks to the naturality of µ. Notice
that µC1

×µC0
µC1

coincides with µC1×C0
C1

by the universal property of the pullback, and
we can thus choose id as structure 2-cell

T 2(C1 ×C0
C1) T 2(C1)

T (C1 ×C0
C1) T (C1)

T 2(⊗)

µC1×C0
C1 µC1

T (⊗)

by naturality of µ, making µC into an internal strict functor between internal pseudo-
categories (the required axioms hold thanks to the 2-naturality of µ). 2-naturality of µ then
also guarantees that µ is 2-natural.
Given C ∈ PsCatopl(K ), we then analogously define ηC to be the normal internal strict
functor (ηC0

: C0 → T (C0), ηC1
: C1 → T (C1), id). 2-Naturality of η guarantees that η is well

defined and 2-natural.
It is straightforward to check that (T opl, η, µ) satisfies the axioms for a 2-monad on

PsCatopl(K ), thanks to the corresponding ones for (T, η, µ) and the fact that both η and µ
have internal strict functors as components, with structure 2-cells given by identities.

Notice then that the 2-monad T opl on PsCatopl(K ) restricts to a 2-monad Tps on
PsCatps(K ). Indeed if (F0 : C0 → D0, F1 : C1 → D1, φ) is a normal internal pseudofunctor,
which means that φ is invertible, then also T (φ) is invertible and

(T (F0), T (F1), T (φ)) : T opl(C)→ T opl(D)

is a normal internal pseudofunctor. Moreover, both η and µ have as components internal
strict functors.

We now prove that

T opl-PsAlg lax
∼= PsCatopls(T -PsAlg lax).

So consider (C,Q : T opl(C) → C, (αµ,0, αµ,1)) a normal pseudo-algebra for T opl. Here, C =

(C0, C1, src, tgt, i,Φ), with Φ the associator, and (αµ,0, αµ,1) : Q ◦ T oplQ ⇒ Q ◦ µC is the
internal (levelwise) natural transformation which gives the structure 2-cell of a normal pseudo-
algebra. We write Q = (Q0, Q1, φ

Q), with φQ the structure 2-cell for the internal oplax
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functor Q. The following diagrams help visualizing the situation:

T (C1)×T (C0) T (C1) T (C1) T (C0)

C1 ×C0
C1 C1 C0

T (⊗)

Q1×Q0
Q1

T (src)

T (tgt)

∼= φQ Q1

T (i)

Q0

⊗
src

tgt
i

T
2
oplC T oplC T 2C1 TC1

TC1 C1

T oplC C T 2C0 TC0

TC0 C0

µC

T oplQ Q

µC1

TQ1
Q1

Q1

Q

µC0

TQ0

Q0

Q0

αµ
=

αµ,1

αµ,0

It is straightforward to show that:

• The 2-cells αµ,0 : Q0 ◦ TQ0 ⇒ Q0 ◦ µC0
and αµ,1 : Q1 ◦ TQ1 ⇒ Q1 ◦ µC1

give
(C0, Q0 : T (C0)→ C0, αµ,0) and (C1, Q1 : T (C1)→ C1, αµ,1) respectively the structure
of normal pseudo-algebras for T ;

• The commutative diagram

T (C1) T (C0)

C1 C0

T (src)

T (tgt)

Q1

T (i)

Q0

src

tgt

i

can be viewed as establishing that src, tgt : C1 → C0 and i : C0 → C1 are strict
morphisms of T -algebras.

By Lemma 4.1, src and tgt have a pullback in T -PsAlg lax, given by

(C1 ×C0
C1, Q1 ×Q0

Q1 : T (C1 ×C0
C1)→ C1 ×C0

C1, αµ,1 ×αµ,0 αµ,1).

And analogously, src and tgt have all iterated pullbacks. We can then use the vertical composi-
tion⊗ of C and φQ to produce a vertical composition for (Q0, Q1). It is indeed straightforward
to show that the 2-cell

T (C1 ×C0
C1) T (C1)

C1 ×C0
C1 C1

T (⊗)

Q1×Q0
Q1 Q1

φQ

⊗

is a lax morphism of normal pseudo-algebras for T , and then that

(Q0, Q1, (src, id), (tgt, id), (i, id), (⊗, φQ),Φ)
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is a pseudo-category internal to T -PsAlg lax.
If we now start from a pseudo-category internal to T -PsAlg lax with source, target and

identity being strict morphisms between normal pseudo-algebras, we can produce a normal
pseudo-algebra for T opl. Indeed we can first produce a pseudo-category C internal to K .

Then the structure 2-cell φ⊗ of the vertical composition ⊗ extends Q0 and Q1 to an inter-
nal oplax functor Q : T opl(C) → C, also thanks to the associator Φ being a 2-cell between
algebras. Finally, αµ,0 and αµ,1 form an internal natural transformation thanks to the fact
that src, tgt, i are strict morphisms of normal pseudo-algebras. So we produce a normal
pseudo-algebra for T opl. It is straightforward to see that the two constructions we have

given are inverses of each other, giving a bijection on objects between T opl-PsAlg lax and
PsCatopls(T -PsAlg lax).

Consider now a lax morphism

(C,Q : T opl(C)→ C, (αµ,0, αµ,1))→ (D,R : T opl(D)→ D, (βµ,0, βµ,1))

between normal pseudo-algebras for T opl. This consist of an oplax functor (F0, F1, λ) : C → D
internal to K equipped with a structure internal natural transformation (ξ0, ξ1) where

T (Ci) T (Di)

Ci Di

T (Fi)

Qi Ri
ξi

Fi

for i = 1, 2. This gives us a lax morphism of normal pseudo-algebras

(F0, ξ0) : (C0, Q0 : T (C0)→ C0, αµ,0)→ (D0, R0 : T (D0)→ D0, βµ,0)

and analogously (F1, ξ1) : Q1 → R1. We can thus associate to ((F0, F1, λ), (ξ0, ξ1)) the oplax
functor internal to T -PsAlg lax given by

((F0, ξ0) : Q0 → R0, (F1, ξ1) : Q1 → R1, λ).

Indeed, it is straightforward to show that

C1 ×C0
C1 D1 ×D0

D1

C1 D1

F1×F0
F1

⊗ ⊗

F1

λ

is a 2-cell between lax morphisms of normal pseudo-algebras and that the structure defined
above is an oplax functor internal to T -PsAlg lax. Notice that, for the latter, the required
axioms are equalities of 2-cells between normal pseudo-algebras, which can then be checked
in K using the underlying 2-cells. The following diagram helps visualizing the situation:

T (C1) ×T (C0) T (C1) T (C1) T (C0)

T (D1) ×T (D0) T (D1) T (D1) T (D0)

C1 ×C0
C1 C1 C0

D1 ×D0
D1 D1 D0

T (λ)
∼=

ξ1×ξ0
ξ1 ξ1∼=

ξ0

λ
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Starting now from an oplax functor ((F0, ξ0) : Q0 → R0, (F1, ξ1) : Q1 → R1, λ) inter-
nal to T -PsAlg lax between pseudo-categories with source, target and identity being strict
morphisms between normal pseudo-algebras, we produce a lax morphism between normal
pseudo-algebras for T opl. It is straightforward to show that (F0, F1, λ) is an oplax functor
internal to K , thanks to the fact that ((F0, ξ0), (F1, ξ1), λ) is an oplax functor and λ is a 2-
cell between normal pseudo-algebras. Then (ξ0, ξ1) is an internal natural transformation that
makes ((F0, F1, λ), (ξ0, ξ1)) into a lax morphism between normal pseudo-algebras for T opl.
It is straightforward to show that the two assignments we have described are functorial and
inverses of each other, giving the 1-dimensional part of

T opl-PsAlg lax
∼= PsCatopls(T -PsAlg lax).

We show that the 2-dimensional part holds as well. So consider a 2-cell between normal
pseudo-algebras for T opl. This is an internal natural transformation (γ0 : F0 =⇒ G0, γ1 : F1 =⇒
G1) that satisfies some axioms. It is straightforward to see that γ0 is a 2-cell from the lax
morphism (F0, ξ0) of normal pseudo-algebras to the corresponding (G0, ξ

′
0), and analogously

for γ1. One can then see that sending (γ0, γ1) to (γ0, γ1) and vice versa gives an isomorphic
2-functor, exhibiting thus the isomorphism of 2-categories

T opl-PsAlg lax
∼= PsCatopls(T -PsAlg lax).

Finally, it is straightforward to see that this isomorphism of 2-categories restricts to

Tps-PsAlgps ∼= PsCatpss(T -PsAlgps).

Indeed the structure 2-cell φQ of the internal oplax functor Q and the structure 2-cell φ⊗ of
the lax morphism of normal pseudo-algebras which gives the vertical composition for (Q0, Q1)
correspond to each other, and if one is invertible then the other one is invertible. Analogously,
for ξ0, ξ1 and λ in the correspondence between morphisms.

So we have established the required isomorphisms of 2-categories. □

Remark 4.3 The intuitive idea behind the proof of Theorem 4.2 is that, interestingly,
objects, morphisms, and 2-cells of the 2-categories

T opl-PsAlg lax and PsCatopls(T -PsAlg lax)

and
Tps-PsAlgps and PsCatpss(T -PsAlgps)

respectively, are all presented by the same underlying data, grouped with each other in two
different ways.

We can now apply this general monadicity theorem to generalize the fundamental
monadicity result of 2.4 to the double categorical setting.

Construction 4.4 We construct the needed generalization of the squaring 2-monad on Cat
to the double categorical setting. We use the recipe given by Theorem 4.2.

The underlying 2-functor of the squaring 2-monad (−)→ : Cat → Cat preserves pullbacks.
Indeed taking exponentials by → in Cat gives a right adjoint, that then preserves limits. By
Theorem 4.2, then (−)→ : Cat → Cat induces a 2-monad

(−)→λ : PsCatopl(Cat )→ PsCatopl(Cat ).
(Note that in the notation of Theorem 4.2 this would be called (−)→opl, but for reasons that
will become clear in Remark 4.5 we choose this new notation.) But notice that PsCatopl(Cat )
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precisely gives the 2-category DblCatopl of pseudo double categories, normal (i.e. unitary)
oplax double functors and horizontal natural transformations (i.e. with arrow components).
So we get a 2-monad

(−)→λ : DblCatopl → DblCatopl
which restricts to a 2-monad (−)→τ on the 2-category DblCatps of pseudo double categories,
normal pseudo double functors and horizontal natural transformations. By Theorem 4.2, the
2-monad (−)→λ sends a pseudo double category D to the pseudo double category D→ given by

D→
1 ×D→

0
D→

1 D→
1 D→

0
⊗→ src→

tgt→
i→

with associators induced from D. Equivalently, D→ is given by the exponential (also called
cotensor) of D to the walking horizontal arrow→ (i.e, the double category which has a single
non-trivial horizontal arrow and only has vertical identities both as proarrows and double
cells). See [? , Section 7] for the explicit construction of the exponential as the pseudo dou-
ble category of (normal lax) double functors, horizontal transformations as arrows, (strong)
vertical transformations as proarrows and (strong) modifications as double cells. Explicitly,
D→ has the following description:

an object is a (horizontal) arrow f : A→ B in D;
an arrow f → g is a pair (u, v) of arrows in D forming a commutative square in D0

A A′

B B′

u

f g

v

a proarrow f −p−→ h is a double cell in D

A B

C D

f

m p np

h

α

a double cell

f g

h k

(u,v)

α p βp

(y,z)

Ξ is a pair Ξ = (σ, τ) making the following cube commute (as a

square in D1)

A′ B′

A B

C′ D′

C D

p

m′

g

p

n′

pm

u
f v

β

k

σ α

y

h

τ

z

np

i.e, (α|τ) = (σ|β).
identities and composition are induced from D.
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The functor (−)→λ then acts on morphisms and 2-cells in the following way:

(−)→λ : DblCatopl −→ DblCatopl
D

E

H Kα 7→
D→

E→

H◦− K◦−α∗−

Remark 4.5 We can merge the two 2-monads (−)→λ : DblCatopl → DblCatopl and
(−)→τ : DblCatps → DblCatps into an F-categorical monad.

Recall from [? ] that F-category theory coincides with category theory enriched over F ,
which is the cartesian closed full subcategory of Cat→ determined by the functors which are
injective on objects and fully faithful (i.e, full embeddings). An F-category § is given by a
collection of objects, a hom-category § (X, Y )τ of tight morphisms and a second hom-category
§ (X, Y )λ of loose morphisms that give 2-category structures (respectively) §τ and §λ to §,
together with an identity on objects, faithful and locally fully faithful 2-functor J§ : §τ → §λ;
this is equivalent to a 2-category §λ with a selected subclass of morphisms called tight forming
a sub-2-category (with all 2-cells). An F-functor F : § → T is a 2-functor Fλ : §λ → Tλ that
restricts to a 2-functor Fτ : §τ → Tτ (forming a commutative square); this is equivalent to
Fλ preserving tightness. And an F-natural transformation is a 2-natural transformation αλ
between the loose parts that restricts to one between the tight parts; this is equivalent to αλ
having tight components.
F-categories, F-functors and F-natural transformations then form a 2-category F-Cat .

An F-monad is a pseudomonoid in F-Cat , which is equivalent to a 2-monad on the loose
part whose underlying 2-functor preserves tightness and such that the multiplication and the
unit have tight components.

Notice that an F-monad T on § always induces two 2-monads Tτ and Tλ on §τ and §λ
respectively, together with a 2-monad morphism (§τ , Tτ ) → (§λ, Tλ). As a consequence, it
also induces a 2-functor (of inclusion) Tτ -PsAlgps → Tλ-PsAlgps (and an analogous one with
lax morphisms of pseudo-algebras), by [? , Lemma 3.1].

Proposition 4.6 The two squaring 2-monads of Construction 4.4 form an F-monad (−)→
on the F-category DblCatps / opl of pseudo double categories, normal pseudo double functors
as tight morphisms, normal oplax double functors as loose morphisms and horizontal natural
transformations as 2-cells.

Proof By the proof of Theorem 4.2, the 2-monad (−)→λ on the loose part DblCatopl of
DblCatps / opl restricts to the 2-functor (−)→τ . Moreover the multiplication and the unit of
(−)→λ have tight components. Indeed, their components are actually internal strict functors.

□

We can now deduce the main theorem of this section, which is a monadicity result
for both DOFS and lax DOFS, generalizing the fundamental result of Theorem 2.4 to
the double categorical setting. This theorem further justifies the internal definition of
(lax) double orthogonal factorization system we presented in Section 3.
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Theorem 4.7 Normal pseudo-algebras for the 2-monad (−)→τ on DblCatps are precisely the
double orthogonal factorization systems.

Normal pseudo-algebras for the 2-monad (−)→λ on DblCatopl are precisely the lax double
orthogonal factorization systems.

Proof By Theorem 4.2 and Construction 4.4, the 2-monad (−)→λ : DblCatopl → DblCatopl is
such that

(−)→λ -PsAlg lax
∼= PsCatopls((−)→-PsAlg lax).

But by Theorem 2.4 and Notation 2.9 (thanks to Proposition 2.11), (−)→-PsAlg lax pre-
cisely coincides with Fact lax. And then, by Definition 3.13, PsCatopls((−)→-PsAlg lax) is
precisely the 2-category of lax double orthogonal factorization systems. We have thus proved
that normal pseudo-algebras for the 2-monad (−)→λ give precisely lax DOFS. The restricted
isomorphism of 2-categories

(−)→τ -PsAlgps ∼= PsCatpss((−)→-PsAlgps)

then shows that normal pseudo-algebras for the 2-monad (−)→τ give precisely DOFS. □

Remark 4.8 By Theorem 4.7, we can rewrite the axioms of a lax DOFS as the axioms
of a normal pseudo-algebra for the 2-monad (−)→λ on DblCatopl. The latter is given by a
double category D equipped with an algebra structure Q : D→ → D. Q has components
Q0 : D→

0 → D0 and Q1 : D→
1 → D1, expressing the orthogonal factorization systems on D0

and D1 (i.e, on horizontal arrows and double cells viewed in the horizontal direction), by
Theorem 2.4 and Remark 2.5. Interestingly, the axioms of compatibility between the two
orthogonal factorization systems on D0 and D1 precisely translate into making Q a normal
oplax functor. For example, the axiom of the oplax functor Q respecting sources

D→
1 D→

0

D1 D0

src→

Q1 Q0

src

captures the axiom of src being a strict morphism of orthogonal factorization systems.

Moreover, by essentially the same line of reasoning as in Theorem 4.7, we can
describe a lax morphism between lax DOFS’s as a lax morphism between normal
pseudo-algebras for the 2-monad (−)→λ on DblCat opl. The latter, for a morphism
between normal pseudo-algebras QD : D→

λ → D and QE : E→
λ → E, is given by an

oplax double functor F : D → E equipped with a transformation 𭟋 as in the following
diagram:

D→ E→

D E

F→

QD 𭟋 QE

F

that commutes appropriately with the data of QD and QE. In particular, by
Proposition 2.11, the underlying natural transformations

𭟋i : QE
i ◦ F→

i ⇒ Fi ◦QD
i
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for i = 0, 1, equivalently witness that Fi preserves the right class of morphisms in the
factorization system on Di given by QD

i . Furthermore, 2-cells between such morphisms
can be given by arrow-direction 2-cells that give rise to commuting cylinders,

D→ E→ D→ E→

D E D E

F→

QD QE
G→

F→

QD QE

F

G

G

𭟋 =

α→

γ

α

i.e., pairs of compatible 2-cells between lax morphisms of categories with orthogonal
factorization systems. So we can conclude:

Proposition 4.9 A lax morphism between lax DOFS’s is an oplax double functor that pre-
serves the right class – both of horizontal morphisms, and of double cells. Similarly, a (pseudo)
morphism between DOFS’s is a (pseudo) double functor that preserves both left and right
classes of horizontal arrows and double cells. 2-Cells between these morphisms correspond to
arrow direction (horizontal) transformations between the double functors that are compatible
with the algebra structure on both the arrows and the double cells.

Remark 4.10 The inclusion of algebras (−)→τ -PsAlg lax → (−)→λ -PsAlg lax described in
Remark 4.5, guaranteed from having an F-monad (−)→ on DblCatps / opl, is the inclusion of
DOFS’s into lax DOFS’s.

Remark 4.11 The whole theory of this section can be dualized for colax DOFS’s. This way
we obtain normal pseudo-algebras for the 2-monad (−)→lax on DblCat lax are precisely the
colax double orthogonal factorization systems. A lax morphism between colax DOFS’s is a
lax double functor that preserves the left class – both of horizontal morphisms, and of double
cells.

Remark 4.12 We see here that the treatment of double orthogonal factorization systems as
algebras for a monad gets us various 2-categories of double orthogonal factorization systems
on double categories (one for each flavour: oplax, lax, pseudo, strict, where obviously the
last two are sub-2-categories of the former). However, keeping the algebra functors within
the larger context of all double categories with various flavours of double functors gives us
further options for morphisms and 2-cells between them. In [? ] there is a double category
with lax functors in one direction and oplax functors in the other direction. The cells for this
double category would give rise to a notion of morphism between double categories with a lax
orthogonal factorization systems that preserves the left class (where the vertical composition
preserves the right class). In this paper we will not explore this further.

Another type of morphism that is afforded us by this approach is to go from a double
category with a lax DOFS to one with an oplax DOFS (or vice versa). In this case the
morphism F needs to be a pseudofunctor. We will have use for these morphisms in Section 5
when we want to compare different DOFS with a common OFS on the arrows of the double
category.
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Remark 4.13 Double categories also give us the option to turn the 2-category of double
categories with a lax DOFS into a category enriched in double categories. We do this by
adding vertical transformations to the mix; i.e., transformations in the proarrow direction.
Let D and E be double categories with a lax DOFS and F,G : D→ E be oplax double functors
which also preserve the right classes. A vertical transformation θ : F ⇒| G would correspond
to a functor θ : D0 → E1 satisfying the usual properties. In this case, we only need to add the
requirement that θ be a lax morphism of algebras; i.e., that it preserves the right class. We
can now get the double category structure on the homs by taking the full sub double category
on these horizontal and vertical transformations: simply, take all modifications that fit.

There is even more possible: we can combine all the algebras for the arrow monad, the
lax, the colax, the pseudo and the strict, into a single 2-category with the use of 2-cells and
arrows as indicated in [? ]. We will not need this result in full. We will only use it in the next
section for DOFS extending a common OFS on the arrows of a double category.

5 Extending an arrow OFS to a DOFS

In this section we present some results around the question when a given OFS on the
arrows of a double category can be extended to a DOFS and how these extensions are
related to each other. We will illustrate this by extending our examples from Section
3 and adding some new ones.

5.1 Theoretical results

We present further examples of double orthogonal factorization systems. Every double
orthogonal factorization system (L,R) on D has an underlying factorization system
(L0,R0) on its category of arrows D0. In this section we will consider the extensions of
various well-known orthogonal factorization systems to double factorization systems
and we will explore the relationships between these extensions.

For our first general result we want to address the requirement that the source,
target and identity structure arrows, src, tgt and i, of D need to be strict morphisms of
categories with an orthogonal factorization system. We give a condition under which a
pair of orthogonal factorization systems for which these structure arrows only preserve
the left and the right classes can be adjusted to a pair for which these maps are strict;
i.e, preserve the chosen factorizations.

Proposition 5.1 Let D be a double category such that both D0 and D1 are categories with
an OFS and chosen factorizations such that the source, target and unit functors preserve the
left and right classes, but not necessarily the chosen factorizations. Then the factorizations
of the cells in D can be adjusted to obtain a DOFS for D if for every diagram of invertible
arrows and a proarrow on the left there is a horizontally invertible cell θ as on the right:

• • • •

• • • •

∼=

up

∼=

up vp

∼= ∼=

θ
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Proof Given a choice of factorizations for the arrows, f = rf ◦ ℓf where ℓf ∈ L and rf ∈ R,
we will show how to adjust the factorization for the double cells so that all of src, tgt and i
preserve the chosen factorizations.

We make the units functor strict by choosing the corresponding factorizations for the
unit cells: ℓif = iℓf and rif = irf .

To adjust the factorizations of the other cells so that source and target become strict, let

A C A A′ C

B D B B′ D

f

up vp

src(ℓα)

up

src(rα)

Im(α)p vp
g tgt(ℓα) tgt(rα)

α = ℓα rα

be the chosen factorization for a cell α. By orthogonality of the factorization system on D0,
there are unique isomorphisms d1 and d2 making the following diagrams commute:

A′ B′

A C B D

Im(f) Im(g)

src(rα)

d1

tgt(rα)

d2

src(ℓα)

ℓf

tgt(ℓα)

ℓgrf rg

Now choose a horizontally invertible cell θ according to the condition of the proposition:

A′ Im(f)

B′ Im(g)

d1

Im(α)p Im(α)′p

d2

θ

Now let ℓ′α = θ ◦ ℓα and r′α = rα ◦ θ−1, where θ−1 is the horizontal inverse of θ. Since θ is
horizontally invertible, ℓ′α is in the left class on D1 and r′α is in the right class on D1 and
with this new choice of factorizations, the source and target functors have become strict. □

In the following theorem we discuss properties on a double category that assure us
that there is at least one double orthogonal factorization system that extends a given
factorization system on its arrows. We will make use of the notions of extension (or,
cartesian cell) and restriction (or, opcartesian cell) in a double category [? ].

Definition 5.2 1. A double category has an extension, or opcartesian cell, for the diagram
on the left below if there is a cell γMs,s′ as on the right,

A B A B

A′ B′ A′ B′

s

M p

s

M p exts,s′ (M)p

s′ s′

γM
s,s′

with the following universal property: for each double cell
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A B C

A′ B′ C′

s

M p

h

Np

s′ h′

θ

there is a unique cell θ′ such that

A B C A B C

A′ B′ C′ A′ B′ C′

s

M p

h

Np

s

M p

h

exts,s′ (M)p Np

s′ h′ s′ h′

θ = γMs,s′ θ′

2. The definition of restriction, or cartesian cell, is dual to that of extension.

3. A double category has all extensions along arrows in a class S if it has all extensions
for diagrams where the arrows are in S.

4. Dually, a double category has all restrictions along arrows in a class S if it has all
restrictions for diagrams where the arrows are in S.

Proposition 5.3 Let D be a double category with an orthogonal factorization system (L,R)
on D0.

1. If D has all extensions along the arrows in L, it has a lax DOFS (L,R) = (L,R)extn
with (L0,R0) = (L,R), L1 consists of all extension cells with horizontal boundaries in
L, and R1 consists of all double cells with horizontal boundaries in R;

2. If D has all restrictions along arrows in R, it has a colax DOFS (L,R) = (L,R)restr
with (L0,R0) = (L,R), L1 has all double cells with horizontal boundaries in L, and R1

has all restriction cells with horizontal boundaries in R;

Proof 1. It is clear that both the class of extension cells with L-boundaries and the class
of cells with R-boundaries are closed under composition and contain all horizontally
invertible cells.

To factor an arbitrary double cell, factor its horizontal boundary arrows in (L,R), and
take the extension of its vertical source arrow M along the arrows in L. Then the
right side of the factorization is the cell θ′ that exists by the universal property of the
extension cell.

• • • • •

• • • • •

f

M p Np

ℓf

M p

rf

extMℓf ,ℓg

p p

g ℓg rg

θ = γM
ℓf ,ℓg θ′

Finally, to prove the lifting property, we will denote a double cell θ as in the previous

diagram by M
(f,θ,g)−−−−→ N . With this notation, we are considering a commutative square

of the form,
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M N

E P

(h,θ,h′)

(ℓ,γ,ℓ′) (r,δ,r′)

(k,τ,k′)

where γ is an extension cell, ℓ, ℓ′ ∈ L and r, r′ ∈ R. This gives us the following two
diagrams in the arrow category D0,

• • • •

• • • •

h

ℓ r

h′

ℓ′ r′d

k

d′

k′

which have unique diagonals d and d′ because (L,R) is an OFS. Hence, h = d ◦ ℓ and
h′ = d′ ◦ ℓ′. The universal property of γ as extension cell gives rise to a unique double
cell θ′ as in the following diagram,

• • • • • •

• • • • • •

ℓ

M p

d

Np

ℓ

M p
d

Ep Np

ℓ′ d′ ℓ′ d′

θ = γ θ′

This gives the commutativity of the upper triangle in the following diagram,

M N

E P

(h,θ,h′)

(ℓ,γ,ℓ′) (r,δ,r′)(d,θ′,d′)

(k,τ,k′)

For the lower triangle, note that

((r, δ, r′) ◦ (d, θ′, d′)) ◦ (ℓ, γ, ℓ′) = (r, δ, r′) ◦ ((d, θ′, d′) ◦ (ℓ, γ, ℓ′))
= (r, δ, r′) ◦ (hθ, h′)
= (k, τ, k′) ◦ (ℓ, γ, ℓ′)

The uniqueness in the universal property of γ now gives us that (r, δ, r′) ◦ (d, θ′, d′) =
(k, τ, k′). So (d, θ′, d′) is the required lifting. Its uniqueness follows again from the
universal property of γ.

Finally, a choice of an extension cell for each diagram,

• •

• •

ℓ

M p

ℓ′

gives rise to a choice of factorizations of the double cells such that their sources and
targets are the chosen factorizations on the arrows. So we have a DOFS.

2. This follows from the first part by duality.
□
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Recall that each DOFS on D gives rise to a suitable (i.e., normal oplax, lax or
pseudo, depending on the type of factorization system) double functor from D→ to D.
Now a morphism between two double orthogonal factorization systems on the same
double category with the same factorization system on the arrow category corresponds
to a diagram

D→ D→

D D

F→

QD 𭟋 (QD)′

F

where F→ is the identity on D→. Hence, F is the identity on D. So a morphism between
such double orthogonal factorization systems is a horizontal identity on objects trans-
formation between the double functors representing the two factorization systems.
Note that [? ] gives a detailed description of horizontal transformations, where the
domain and the codomain may be double functors with distinct types of laxity.

Theorem 5.4 1. Let D be a double category with an OFS (L0,R0) on its category of
arrows and all extensions along the left class L0. Then for any lax (L,R) on D with
(L0,R0) as the arrow part, there is a unique morphism (L,R)→ (L0,R0)extn of DOFS
on D.

2. Let D be a double category with an OFS (L0,R0) on its category of arrows and all
restrictions along the right class R0. Then for any (L,R) on D with (L0,R0) as the
arrow part, there is a unique morphism (L0,R0)restr → (L,R) of DOFS on D.

Proof 1. Let (L,R) be a DOFS on D, with corresponding oplax double functor Q : D→ →
D. For a double cell θ in D we obtain two factorizations with the same factorizations of
the boundary horizontal cells:

• • • Q(f) •

• • • Q(g) •

• • • Q(f) •

• • • Q(g) •

f

M p Np

ℓf

M p

rf

extMℓf ,ℓg

p

Np

g ℓg

rg

f

M p Np

ℓf

M p

rf

Q(θ)p

Np

g ℓg rg

θ = γM
ℓf ,ℓg θ′

θ = ℓθ rθ

By the universal property of the extension cell γMℓf ,ℓg there is a unique globular double
cell

Q(f) Q(f)

Q(g) Q(g)

idQ(f)

extMℓf ,ℓg

p Q(θ)p

idQ(g)

ℓ′θ
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Let Qextn : D→ → D be the double functor representing the extension DOFS. Then we
define the components of a horizontal transformation

D→ D→

D D

id

Q Qextn

id

ζ

by ζf = idQ(f) for all objects f of D→ (i.e., arrows of D) and ζθ = ℓ′θ for each proarrow
θ of D→. Using the universal property of the extension cells it is easy to check that this
family does indeed define a horizontal transformation, and hence a morphism of DOFS
on D, (L,R)→ (L0,R0)extn. For each component of such a morphism there is only one
cell that could fulfill the role, so this morphism is unique.

2. This follows from the first part by duality.
□

Recall that a fibrant category [? ], also called a framed bicategory [? ], is a double
category with all extensions and restrictions.

Corollary 5.5 For any fibrant double category D with an OFS (L,R) on its category of
arrows, the DOFS (L,R)restr is initial and (L,R)extn is terminal among the DOFS on D
with (L,R) as arrow part.

5.2 Examples

We will now present examples of double categories with multiple DOFS that share the
same OFS on the arrows of the double category.

Example 5.6 (The double category Mod.) In the category Ring of associative unital rings,
the class L of surjective morphisms together with the class R of injective morphisms form
an orthogonal factorization system. This follows from the fact that surjective and injective
functions form an orthogonal factorization system in the category of sets, and the image of
a ring morphism is itself a ring. Moreover, the bijection between two distinct factorizations
into a surjective and an injective morphism is itself a ring isomorphism. The OFS (L,R)
of Ring appears as the factorization system for the horizontal arrows in a colax DOFS on
the double category Mod of associative unital rings, bimodules, and equivariant morphisms.
The left class L1 of the factorization system on the cells consists of surjective cells whose
horizontal morphisms are surjective, while the right class R1 consists of injective cells whose
horizontal morphisms are injective. Every cell φ in Mod admits a factorization of the form:

A C A Imf C

B D B Img C

f

M p Np M p

Imφ Np

g

φ = φ i

where φ̄ denotes the restriction of φ to its image, and i is the inclusion cell. Furthermore,
L1 is closed under vertical composition, since the tensor product of surjective morphisms is
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again surjective. However, the right class R1 is not closed under vertical composition. For
instance, the vertical composition of the cell

R C

R C

Cp Cpid

with itself does not belong to the right class R. This is because i⊗R 1 ̸= 1⊗R i, while over C
one has i⊗C 1 = 1⊗C i. Here, the left vertices labeled R in the cell id, as well as the subscript
in the tensor operator, refer to the field of real numbers.

This is not the only DOFS on Mod, because the double category Mod is fibrant [? ]. The
restriction and extension cells are of the form

A C A C

B D B D

f

N p Np

f

M p C⊗AM⊗BD

g g

id
,

1⊗id⊗1

respectively. Here the left proarrow N in the restriction is the A-B-bimodule induced by f
and g, and the right proarrow C ⊗AM ⊗B D in the extension is the C-D-bimodule obtained
by tensoring the C-A-bimodule C, the A-B-bimodule M , and the B-D-bimodule D. The
morphism 1⊗ id⊗ 1 maps an element m ∈M to 1⊗m⊗ 1.

By Proposition 5.3, there exist a DOFS (L,R)restr and a DOFS (L,R)extn in Mod,
induced by restrictions and extensions cells. Then, every cell φ admits two factorizations of
the form:

A C A Imf C

B D B Img D

f

M p p M p

N Np

g

φ = φ id

and

A C A Imf C

B D B Img D

f

M p p M p

Imf⊗AM⊗BImg Np

g

φ = 1⊗id⊗1 φ

where the cell φ sends an element f(a)⊗A m⊗B g(b) to f(a)φ(m)g(b).
The DOFS (L,R)restr and (L,R)extn differ from the DOFS (L,R). By Theorem 5.4,

there exist a morphism of DOFS (L,R) → (L,R)restr and (L,R)extn → (L,R). Explicitly,
the globular double cells that define these morphisms are

Imf Imf Imf Imf

Img Img Img Img

Imφp Np Imf⊗AM⊗BImg p Imφpi , φ

respectively, where the cell φ maps an element f(a)⊗A m⊗B g(b) to f(a)φ(m)g(b).

Our next example will be the double category Prof of categories, profunctors and
functors. This is double category is also known to be fibrant, so any orthogonal fac-
torization system on Cat will give rise to one or more DOFS on Prof. Here we want
to consider the factorization systems by strong epimorphisms and functors that are
faithful and injective on objects. We first remind the reader of the definitions.
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Definition 5.7 A functor is compositionally surjective if its codomain coincides with the
subcategory generated by its pointwise image.

Observation 5.8 Observe that the class L of compositionally surjective functors and the
class R of faithful functors which are injective on objects form an orthogonal factorization
system in Cat . For a functor F : A → B we write Im(F ) for the subcategory of B on the
objects of the form F (A) with A in A and arrows generated under composition in B by the
arrows of the form F (f) with f in A. We then factor F as

A Im(F ) BF JF

where F is the restriction of F and JF is the inclusion of the subcategory into B. Note that
this makes the compositionally surjective functors the strong epimorphisms in Cat . We will
use this factorization system in the next example.

Example 5.9 The OFS in Cat given in the above observation and the surjective-injective
OFS in Set induce the following DOFS in the double category of profunctors Prof. The left
class L1 of double cells consists of surjective natural transformations with compositionally
surjective functors as horizontal arrows. The right class R consists of injective natural trans-
formations in which horizontal functors are faithful functors that are injective on objects.
It is clear that both L1 and R1 are closed under horizontal composition and contain all
horizontally invertible cells. Before showing that any cell

A C

B D

F

P p Qp

G

φ

has an (L,R)-factorization, it is necessary to define the profunctor Im(φ) : Im(G)
op

×
Im(F ) → Set. For any objects x ∈ Im(F ), y ∈ Im(G), with a ∈ A and b ∈ B that satisfy
F (a) = x and G(b) = y, consider the surjective-injective factorization for the function φb,a:

P (b, a) Q(y, x)

Imφb,a

φb,a

φb,a jb,a

Taking the coproduct over every pair of elements in the fibers of x and y, we get the
commutative diagram for each pair (b, a) in the fiber over (y, x):

P (b, a) Q(y, x)

Imφb,a

⊔
F (a)=x
G(b)=y

Imφb,a

φb,a

φb,a

jb,a

kb,a

qy,x

The functor Im(φ) is defined on objects as

Im(φ)(y, x) :=
⊔

F (a)=x
G(b)=y

Imφb,a
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On morphisms it is defined as follows: if (s, t) is a morphism in Im(G)
op

× Im(F ), then
there are morphisms s1, . . . , sm in Bop and t1, . . . , tn in A such that s = G(sm) · · ·G(s1)
and t = F (tn) · · ·F (t1). Without loss of generality, n = m (otherwise add identity arrows as
needed). For every i = 1, . . . , n there is a unique arrow Imφ(Gsi, F ti) given by the functorial
property applied to the diagram:

P (bi, ai) Q(Gbi, Fai)

Imφbi,ai

Imφbi+1,ai+1

P (bi+1, ai+1) Q(Gbi+1, Fai+1)

φbi,ai

φ

P (si,ti) Q(Gsi,F ti)

jbi,ai

Imφ(Gsi,F ti)

jbi+1,ai+1φ

φbi+1,ai+1

The composition Imφ(Gsn, F tn) · · · Imφ(Gs1, F t1) does not depend on the selection of
the si and the ti for i = 1, . . . , n because jbn+1,an+1

is injective (it is left cancelable) and for
each choice it holds that

jbn+1,an+1
Imφ(Gsn, F tn) · · · Imφ(Gs1, F t1) = Q(Gsn, F tn) · · ·Q(Gs1, F t1)jb1,a1

= Q(s, t)jb1,a1 .

The functor Imφ is defined on a morphism (s, t) as

Im(φ)(s, t) :=
⊔

Imφ(Gsn, F tn) · · · Imφ(Gs1, F t1).

If f : a → c is a morphism in A and h : d → b is a morphism in B, set α = Imφ(Gh,Ff).
This verifies that the next diagram commutes:

P (b, a) Q(y, x)

Imφb,a

⊔
F (a)=x
G(b)=y

Imφb,a

Imφd,c

⊔
F (c)=w
G(d)=z

Imφd,c

P (d, c) Q(z, w)

φ

φ

P (h,f) Q(Gh,Ff)

j

k

α

q

⊔
α

k

φ
j

q

φ

Thus, kφ and q are natural transformations and therefore the next equation holds:

A C A Im(F ) C

B D B Im(G) D

F

P p Qp

F

P p

JF

Im(φ) Qp

G G JG

φ = kφ q

The left class L1 is closed under vertical composition because the tensor product of surjective
morphisms of profunctors is surjective. The counterexample in Example 5.6 shows that the
right class R is not closed under vertical composition.
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Now, let us explicitly describe the vertical composition. Given two profunctors P ′ : Eop×
B → Set and P : Bop ×A → Set , their vertical composition P ′ ⊗B P is given by the coend

P ′ ⊗B P :=

∫ b∈B
P ′(e, b)× P (b, a).

The double category of profunctors is fibrant. The restriction and extension cells are of the
form

A C A C

B D B D

F

Q◦(G×F )p Qp

F

P p HomD( ,G)⊗BP⊗AHomC(F, )p

G G

id
,

idG⊗idP⊗idF

respectively, where for each pair (b, a) the natural transformation idG ⊗ idP ⊗ idF is the
function P (b, a)→ HomD(Gb,G)⊗BP⊗AHom(F,Fa) sending x ∈ P (b, a) to idGb⊗x⊗idFa.
Then, using the OFS in Cat described in Observation 5.8, Proposition 5.3 yields two DOFS
on the double category Prof, namely (L,R)restr and (L,R)extn. In these, each cell φ factors

A C A ImF C

B D B ImG D

F

P p Qp

F

P p

iF

Q◦(iG×iF ) Qp

G G iG

φ = φ id

and

A C A ImF C

B D B ImG D

F

P p Qp

F

P p

iF

HomImG( ,G)⊗BP⊗AHomImF (F, ) Qp

G G
iG

φ = idG⊗idP⊗idF Q( , )φ

respectively. Here, the function

(Q( , )φ)(Gb,Fa) : Hom(Gb,G)⊗ P ⊗Hom(F, Fa)→ Q(Gb, Fa)

is defined on an element g ⊗ x⊗ f by

(Q( , )φ)(Gb,Fa)(g ⊗ x⊗ g) = Q(g, f)(φ(x)).

The DOFS (L,R)restr and (L,R)extn differ from the DOFS (L,R). By Theorem 5.4 there
exist a morphism of DOFS (L,R) → (L,R)restr and (L,R)extn → (L,R). Explicitly, the
globular double cells that define these morphisms are

ImF ImF

ImG ImG

Im(φ)p Q◦(iG×iF )pq

and
ImF ImF

ImG ImG

HomImG( ,G)⊗BP⊗AHomImF (F, )p Im(φ)pQ( , )kφ

respectively. Here, natural trasnformation Q( , )kφ is defined analogously to Q( , )φ.
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Example 5.10 (Quantale-valued relations, Q-Rel) Let Q be a unital quantale. A Q-valued
relation between sets X,Y is a function R : X × Y → Q. Such relations may be composed;
given R : X −p−→ Y, S : Y −p−→ Z, there exists a Q-valued relation R⊗ S : X −p−→ Z, given by

(R⊗ S)(x, z) :=
∨
y∈Y

R(x, y)⊙ S(y, z)

where ⊙ denotes multiplication in Q. There is a double category Q-Rel whose objects are
sets, arrows are functions, and proarrows are Q-relations, with vertical composition given as
above. A cell

X X ′

Y Y ′

f

Rp ≤ R′p

g

exists when R(x, y) ≤ R′(f(x), g(y)) for all x ∈ X, y ∈ Y . If the inequality is in fact an
equality for all x ∈ X and y ∈ Y , we indicate it by writing an equality symbol inside the
cell. The unit proarrow associated to a set X is the function 1 : X ×X → Q that sends the
diagonal to the top element 1 ∈ Q and all other pairs to the bottom element 0 ∈ Q. The unit
cell associated to an arrow f : X → X ′ is the cell

X X ′

X X ′

f

1p 1p

f

=

This double category Q-Rel is fibrant. The restriction and extension cells are of the form

X X ′ X X ′

Y Y ′ Y Y ′

f

R′ p R′p

f

Rp R

g g

=
,

≤

respectively. Here, R′ := R′ ◦ (f × g) and R(x′, y′) :=
∨
f(x)=x′

g(y)=y′
R(x, y).

Consider the surjective-injective orthogonal factorization system in the category of sets.
Let L denote the class of surjective functions and R the class of injective functions. By
Proposition 5.3, there exist two DOFS in Q-Rel, namely (L,R)restr and (L,R)extn . These
two DOFS provide distinct ways to factor a cell:

X X ′ X Imf X ′

Y Y ′ Y Img Y ′

f

Rp R′p

Rp R′ R′p

g

≤ = ≤ =

and

X X ′ X Imf X ′

Y Y ′ Y Img Y ′

f

Rp R′p

Rp R R′p

g

≤ = ≤ ≤

respectively. We verify how these two factorization systems are related. For a ∈ Imf and
b ∈ Img, we calculate:

R(a, b) =
∨

f(x)=a
g(y)=b

R(x, y)
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≤
∨

f(x)=a
g(y)=b

R′(f(x), g(y))

= R′(a, b)

= R′(a, b).

So we obtain a morphism of DOFS extending the epi-mono factorization system (L,R) on
Set , (L,R)restr → (L,R)extn.

In the particular case Q = {0, 1} we recover the double category Rel(Set) from Example
3.4, and the DOFS (L,R)extn coincides with the DOFS given in that example.

Example 5.11 (The double category Span(C)) Let C be a category with an OFS (L,R). In
this example we want to expand on the work in Example 3.3. Let Q : C→ → C be the functor
that represents the OFS (L,R). And write f = rf ◦ ℓf for the chosen factorizations of the
arrows in C. Then the factorization of a double cell in the DOFS of Example 3.3 is given by:

• • • • •

• • • • •

• • • • •

f ℓf rf

u

m

v

u′

=

v′

u

ℓm
v

Q(u,u′)

rm

Q(v,v′)

u′

v′

g ℓg rg

Extensions in Span(C) are double cells of the form:

• •

• •

• •

f

u

id

v

fu

gv

g

Hence, the factorization of cells in (L,R)extn is given by:

• • • • •

• • • • •

• • • • •

f ℓf rf

u

m

v

u′

=

v′

u

id
v

ℓfu

m

ℓgv

u′

v′

g ℓg rg

If C has pullbacks, Span(C) also has restrictions, defined as follows:
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•

• • • •

• • where • •

• • • •

•

f

f
u′

⌟

fu′g

n

v′f

u′

v′

g

⌟
n

f

u

v′

g

g

⌟

v′ g

and the corresponding factorization of double cells is given by:

• • •

• • • •

• • • where • • •

• • • •

• • •

ℓf
rf

ℓf rf
u′

⌟

rf
u

m′

v

u′rf

n

v′rg

u′

v′

u mf

m′

mgv

rg

⌟ n

rf

u′

v′
ℓg rg

rg

v′
⌟

ℓg rg

where the dashed and dotted arrows are induced by the universal properties of the pullbacks.
In the following diagram, we see how our original DOFS sits in between the extension

and the restriction systems:

• • •

• • •

• • •

id id

u′rg

v′rf

Q(u,u′)
r′m

Q(v,v′)

ℓfu

ℓm

lgv

id id

where r′m is the unique arrow into the pullback induced by rm (analogous to how m′ was
defined in the previous diagram).

We will continue this example in Example 6.12 of the next section where we will add one
more factorization system on Span(C).

6 Double factorization systems and double fibrations

We study the interaction between double fibrations, introduced in [? ], and our double
orthogonal factorization systems. We generalize some results that are well-known in
the ordinary case to the double categorical context and we present some examples.
In particular, we show that both DOFS and lax DOFS can be lifted along double
fibrations.

52



We start recalling the following folklore result for which we could not find an
appropriate reference. The construction in the proof will be used in proving the results
for DOFS and double fibrations that follow.

Proposition 6.1 Let P : E → B be an (ordinary) cloven Grothendieck fibration and let (L,R)
be an orthogonal factorization system on B. Then (L,R) lifts to an orthogonal factorization
system (LP ,RP ) on E, taking LP to be the collection of morphisms over morphisms in L
and RP to be the collection of cartesian morphisms over morphisms in R.

Proof Let f : x → y be a morphism in E and let P (f) = rP (f) ◦ ℓP (f) be the chosen factor-
ization in B. Then f = cart(rP (f), y) ◦ g, where cart(rP (f), y) is the chosen cartesian lifting
of rP (f) with codomain y and g is the unique morphism induced by the cartesian property
of this lifting as in the following diagram; i.e., P (g) = ℓP (f).

x (rP (f))
⋆y y

P (x) Q(P (f)) P (y).

f

∃!g cart(rP (f),y)

ℓP (f)
rP (f)

So f can be factorized as a composite of a morphism over a morphism in L followed by a
morphism that is cartesian over a morphism in R.

Moreover, using the fact that the morphisms in RP are cartesian, it is straightforward
to prove that the required lifting properties hold and hence (LP ,RP ) is an orthogonal
factorization system on E . □

Remark 6.2 Note that in the proof we provided a lifting of the factorization system that
makes the fibration P a strict morphism between categories with an OFS.

We want to generalize the previous result of lifting of OFS along fibrations to the
double categorical context. Double fibrations have been introduced and studied in [? ].

We recall that a double fibration P : E → B between pseudo double categories is a
pseudo-category in the category Fib of fibrations. This amounts to a double functor
P : E → B between pseudo double categories:

E1 ×E0 E1 E1 E0

B1 ×B0 B1 B1 B0

P1×P0
P1

⊗E

P1

sE

tE

P0

yE

⊗B
sB

tB

yB

(7)

such that P0 and P1 are cloven fibrations, sE and tE are cleavage preserving, and yE
and ⊗E preserve cartesian morphisms.
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Theorem 6.3 Let P : E → B be a double fibration and let ((L0,R0), (L1,R1)) be a double
orthogonal factorization system (resp., a lax one) on B. Then ((L0,R0), (L1,R1)) lifts to a
double orthogonal factorization system (resp., a lax one) ((LP0 ,RP0 ), (LP1 ,RP1 )) on E, taking
(LP0 ,RP0 ) := (LP0 ,RP0) and (LP1 ,RP1 ) := (LP1 ,RP1) (in the notation of Proposition 6.1).

Proof Assume that ((L0,R0), (L1,R1)) is a lax double orthogonal factorization system. We
need to prove that ((E0, (LP0 ,RP0)), (E1, (LP1 ,RP1))) is a pseudo-category in Fact lax with
strict source, target and identity arrows. We see immediately that Proposition 6.1 and Remark
6.2 imply that (LP0 ,RP0) and (LP1 ,RP1) are orthogonal factorization systems on E0 and E1

respectively such that P0 and P1 are strict morphisms between categories with orthogonal
factorization systems. We will also show below that the factorization systems on E combine
into a lax double orthogonal factorization system in the sense that sE, tE and yE are strict
morphisms between categories with factorization systems with the chosen factorizations from
the proof of Proposition 6.1. It follows then, thanks to Proposition 2.13, that the required
pullbacks in Cat lift automatically to pullbacks in Fact lax.

We now check that sE and tE preserve the chosen factorizations. Let α be a cell in E,

sE(u) sE(v)

tE(u) tE(v)

sE(α)

up α vp

tE(α)

The factorization of P1(α) is

sBP1(u) • sBP1v

tBP1(u) • tBP1(v)

sBℓP1(α)

P1(u)

p
sBrP1(α)

p P1(v)

p

tBℓP1(α) tBrP1(α)

ℓP1(α) rP1(α) (8)

So the factorization of α is

sE(u) • sEv

tE(u) • tEv

sE(β)

up

sE(cart(rP1(α),v))

p vp

tE(β) tE(cart(rP1(α),v))

β cart(rP1(α),v)

where cart(rP1(α), v) is the cartesian lifting of rP1(α) and β is the unique arrow over ℓP1(α) so
that the composition gives α. We want to show that sE(cart(rP1(α), v)) ◦ sE(β) is the chosen
factorization in E0 of sE(α) and similarly for tE(α).

Since sB and tB are strict, (8) is equal to the diagram

sBP1(u) • sBP1v

tBP1(u) • tBP1(v)

ℓsBP1(α)

P1(u)

p

rsBP1(α)

p P1(v)

p

ℓtBP1(α)
rtBP1(α)

ℓP1(α) rP1(α)

Since P0sE(α) = sEP1(α) and P0tE(α) = tEP1(α) and the sE is cleavage preserving as
map between fibrations, we have that

rsE(α) = cart(rP0sE(α), sE(v))
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= cart(rsBP1(α), sE(v))

= sE cart(rP1(α), v)

By uniqueness of factorizations through cartesian arrows and the fact that sE(β) fits we find
that

ℓsE(α) = sE(β)

We conclude that sE is a strict map between categories with a DOF. The proofs for tE and
yE go similarly, using that t and y are cleavage preserving and that tB and yB are strict maps
of categories with a DOF.

We observe that sE, tE and yE preserve both the left and the right class of arrows. Indeed,
they preserve cartesian morphisms by definition of double fibration and the fact that the
images of morphisms in the left and right class of the total category are over morphisms in
the left and right class in the base category is guaranteed by the fact that sB, tB and yB
preserve morphisms in the left and right class and by the commutativity of diagram (7). For
example, given a double cell α ∈ LP1 , we have P0(sE(α)) = sB(P1(α)) and sB(P1(α)) ∈ L0
since P1(α) ∈ L1 and sB preserves the left class.

Furthermore, since ⊗B preserves the right class, and ⊗E preserves cartesian arrows it
follows that ⊗E preserves the right class. This concludes the proof that ((LP0 ,RP0 ), (LP1 ,RP1 ))
is a lax double orthogonal factorization system.

Let now ((L0,R0), (L1,R1)) be a strict double orthogonal factorization system. Every-
thing we proved in the lax case still holds in the same way. Moreover, since ⊗B also preserves
the left class, we obtain that ⊗E preserves the left class as because of uniqueness of the factor-
izations through a cartesian arrow. Hence, ((LP0 ,RP0 ), (LP1 ,RP1 )) is a strict double orthogonal
factorization system. □

Corollary 6.4 Let P : E → B be a double fibration. Then E has a double orthogonal fac-
torization system ((pseudo-vertical, cartesian), (pseudo-vertical, cartesian)), where an arrow is
pseudo-vertical if P sends it to an isomorphism.

Proof By Proposition 6.3 we can lift the trivial double orthogonal factorization system
((isomorphisms, all morphisms), (isomorphisms, all morphisms)) on B to a double orthogo-
nal factorization system on E. By construction, the double orthogonal factorization system
obtained this way has left classes given by pseudo-vertical morphisms and right classes given
by cartesian morphisms. □

We can now easily prove the analogous results for opfibrations.

Proposition 6.5 Let P : E → B be an (ordinary) cloven Grothendieck opfibration and let
(L,R) be an orthogonal factorization system on B. Then (L,R) lifts to an orthogonal factor-
ization system (LP ,RP ) on E, taking LP to be the collection of cocartesian morphisms over
morphisms in L and RP to be the collection of morphisms over morphisms in R.

Proof Analogous to the proof of Proposition 6.1. We now induce the right part of the fac-
torization of a given morphism in E using the cocartesian property of the chosen cocartesian
lifting of the left part of the image of the given morphism under P . Moreover, the required
lifting properties can be proved using the cocartesian property of the morphisms in LP . □
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Theorem 6.6 Let P : E → B be a double opfibration and let ((L0,R0), (L1,R1))
be a double orthogonal factorization system (respectively, a lax one) on B. Then
((L0,R0), (L1,R1)) lifts to a double orthogonal factorization system (respectively, a lax one)
((LP 0,RP 0), (LP 1,RP 1)) on E, taking (LP0 ,RP0 ) := (LP0 ,RP0) and (LP1 ,RP1 ) :=
(LP1 ,RP1) (in the notation of Proposition 6.5).

Proof Analogous to the one of Theorem 6.3. □

Corollary 6.7 Let P : E → B be a double opfibration. Then E has a double orthogonal
factorization system ((cocartesian, pseudovertical), (cocartesian, pseudovertical)).

Proof By Proposition 6.6 we can lift the trivial double orthogonal factorization system
((isomorphisms, all morphisms), (isomorphisms, all morphisms)) on B to a double orthogonal
factorization system on E. By construction, the obtained double orthogonal factorization sys-
tem has left classes given by cocartesian morphisms and right classes given by pseudovertical
morphisms. □

We now present some applications of the results in this section.

Example 6.8 (Double Elements Construction) Following [? ], we can associate to any lax
double pseudofunctor F : Dop → Span(Cat ) (with D a pseudo double category) its double
elements construction Π: El(F )→ D. Recall that Π0 is the (ordinary) elements construction
of F0 : Dop

0 → Cat , while Π1 is the elements construction of the composite

Dop
1

F1−−→ Span(Cat )1
apx−−→ Cat ,

where apx is the apex functor that sends any span to its middle object. Explicitly, by Theorem
3.46 of [? ], the pseudo double category El(F ) is given as follows:

- objects: pairs (C,X) with C ∈ D0 and X ∈ F (C);

- arrows: pairs (f, f) : (C,X)→ (D,Y ) with f : C → D in D and f : X → f⋆Y in F (C);

- proarrows: pairs (m,m) : (C,X) −p−→ (D,Y ) with m : C −p−→ D in D and m ∈ F (m),
such that Dm(m) = X and Um(m) = Y where the span

F (B)

F (m)

F (A)

Um

Dm

is the image of the proarrow m under F ;

- double cells: pairs (θ, θ) displayed

(A,X) (C,Z)

(B, Y ) (D,W )

(f,f)

(m,m) p (n,n)p

(g,g)

(θ, θ)
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with

A C

B D

f

m p np

g

θ

a double cell in D and θ : m → θ⋆n an arrow of F (m) such that Dm(θ) = f and
Um(θ) = g.

Corollary 6.4 yields a ((pseudo-vertical,cartesian),(pseudo-vertical,cartesian)) DOFS on
El(F ), by lifting the trivial DOFS on D along Π. In terms of the explicit description of
the double elements construction, we obtain the following factorizations. By the proof of
Proposition 6.1, an arrow (f, f) : (C,X)→ (D,Y ) in El(F ) factorizes as the composite

(C,X)
(id,f)−−−−→ (C, f⋆Y )

(f,id)−−−−→ (D,Y ),

since (f, id) is the chosen cartesian lifting of f to Y along the fibration Π0 : El(F )0 → D0

and the arrow (id, f) is the vertical arrow induced by cartesianity of (f, id). A double cell

(A,X) (C,Z)

(B, Y ) (D,W )

(f,f)

(m,m) p (n,n)p

(g,g)

(θ, θ)

then factorizes as the composite

(A,X) (A, f⋆Z) (C,Z)

(B, Y ) (B, g⋆W ) (D,W )

(id, θ)

(id,f)

(m,m) p (θ, id)

(f,id)

(m,θ⋆n)p (n,n)p

(id,g) (g,id)

where the double cell (θ, id) is the chosen cartesian lifting of θ along Π1 : El(F )1 → D1 and
the vertical double cell (id, θ) is the one induced by cartesian property of (θ, id).

Example 6.9 (Domain Double Fibration) Consider the domain double fibration

dom: D→ → D

that sends:

• an arrow A
f−→ B to A;

• a commutative square

A A′

B B′

u

f g

v

to A
u−→ A′;

• a double cell

A B

C D

f

mp np

h

α to

A

C

mp
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• a cube

A′ B′

A B

C′ D′

C D

g

m′ p n′p

u

f

mp

y

npk

v

h

z

β

σ

α

τ to

A A′

C C′

u

mp m′p

v

σ

Given a double orthogonal factorization system ((L0,R0), (L1,R1)) on D, Theorem 6.3
lets us lift it to a double orthogonal factorization system ((Ldom0 ,Rdom

0 ), (Ldom1 ,Rdom
1 )).

In particular, since a square

A A′

B B′

u

f g

v

(9)

is cartesian if and only if v is an isomorphism, we obtain that Rdom
0 is the collection of

commutative squares with top morphism in R0 and bottom morphism an isomorphism while
Ldom0 is the collection of commutative squares with top morphism in L0. Moreover, the square
in diagram (9) factorizes as the composite

A Q(u) A′

A′

B B′ B′

ℓu

f

ru

ru

g

g

Analogously, a cube

A′ B′

A B

C′ D′

C D

g

m′ p n′p

u

f

mp

y

npk

v

h

z

β

σ

α

τ (10)

is cartesian if and only if the cell τ is horizontally invertible and thus Rdom
1 is the collection of

cubes with left face in R1 and right face horizontally invertible, while Ldom1 is the collection
of cubes with left face in L1. Moreover, a factorization of the cube of diagram (10) is given
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by the composite:

A′ B′

Q(u) B′

A B C′ D′

Q(v) D′

C D

g

m′p

n′ p

ru

ru

p n′p

ℓu

f

mp

y

np

k

rv

k◦rv

ℓv

h

z

β

rσ

ℓσ

α

τ

Furthermore, we notice that if ((L0,R0), (L1,R1)) is the trivial double orthogonal fac-
torization system, the obtained factorizations coincide with the factorization system of the
free algebra for the squaring monad (see Construction 4.4).

Example 6.10 (Codomain Double Opfibration) Dual to Example 6.9, we can lift a double
orthogonal factorization system ((L0,R0), (L1,R1)) on D along the double opfibration

cod: D→ → D
defined dually to dom: D→ → D. A square is cocartesian exactly when its top morphism
is an isomorphism. So, by Theorem 6.6, Lcod0 is the collection of commutative squares with
bottom morphism in L0 and top morphism an isomorphic while Rcod

0 is the collection of
commutative squares with bottom morphism in R0. And analogously for double cells. The
obtained factorizations of squares and cubes in D→ are dual to the ones described in Example
6.9.

Example 6.11 (Codomain Double Fibration) Let D be a pseudo-category in the 2-category
of finitely-complete categories, limit-preserving functors and natural transformations. Assume
also that source and target (strictly) preserve finite limits and identity and composition
preserve finite limits up to isomorphism.

Under these hypotheses, the codomain double functor cod: D→ → D has a structure of
double fibration as well, with cartesian liftings given by pullbacks (see Proposition 2.29 of [?
]). Cartesian squares are exactly pullback squares and cartesian cubes as pullback squares of
double cells in D1.

Given a double orthogonal factorization system ((L0,R0), (L1,R1)) on D, its lifting along
the double fibration cod produces a double orthogonal factorization system on D→ as follows.
The left class of squares consists of the squares with bottom morphism in L0, while the right
class is the collection of pullback squares with bottom morphism in R0. And analogously for
cubes, considering pullbacks in D1. The square

A A′

B B′

u

f g

v
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factorizes as the composite

A A′ ×B′ Q(v) A′

B Q(v) B′,

a

f
⌟

g

ℓv rv

where a is the unique morphism induced by the universal property of the pullback A′×B′Q(v)
starting from the pair (u, ℓv ◦ f). Factorizations of cubes are given analogously.

Example 6.12 (Image Double Fibration) Consider the image double functor Im: Span →
Rel such that Im0 : Set → Set is the identity and Im1 : Span1 → Rel1 sends a span A

u←−

S
v−→ B to the image Im(u, v) of S

(u,v)−−−→ A×B (seen as a relation) and a morphism of spans

A C

S R

B D

f

u

m

v

u′

v′

g

(11)

to the morphism of relations

Im(u, v) Im(u′, v′)

A×B C ×D

m

f×g

where m : Im(u, v)→ Im(u′, v′) is the function defined by,

(u(s), v(s)) 7→ (u′(m(s)), v′(m(s))).

The double functor Im is a double fibration (Example 2.25, [? ]). A morphism of spans
(f,m, g) as in (11) is cartesian precisely when the square

S R

Im(u, v) Im(u′, v′)

m

(u,v)

⌟
(u′,v′)

m

is a pullback. We can now consider two distinct double orthogonal factorization systems on
Rel: the one defined by extensions and the one defined by restrictions. The one defined by
extensions was also described in detail in Example 3.4. Lifting this DOFS along the image
double fibration, we obtain the following DOFS on Span. The left and right classes of arrows
are given by surjective and injective functions as expected. The left class of double cells LIm1
is given by morphisms of spans (f,m, g) such that f and g are surjective and m is surjective,
while the right class RIm

1 is given by those morphisms of spans (f,m, g) such that f and g are
injective, m is injective and (f,m, g) is cartesian. We can now compare this DOFS on Span
with the one described in Example 3.3. Since the surjectivity of m implies the surjectivity of
m (but the two are not equivalent) we have that LIm1 strictly contains the left class of double
cells of Example 3.3. On the other hand, as expected, since the injectivity of m implies the
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injectivity of m, we have that RIm
1 is strictly contained in the right class of double cells

described in Example 3.3. To obtain the morphisms between this DOFS on Span and the
system described in Example 3.3 as double factorization systems over a common factorization
system on the arrows, we spell out the chosen factorizations of the cells in Span with this
system. We will denote this factorization by

A A′ A Im(f) A′

S R = S Im(S) R

B B′ B Im(g) B′

f ℓf rf

u

m

v

u′

v′

u

λm

v

q1

ρm

q2

u′

v′

g ℓg rg

To determine the central object of this diagram and the arrows in and out of it, let

Im(u, v)
ℓm−−→ X

rm−−→ Im(u′, v′) be the epi-mono factorization of m. Then define Im(S) as
the pullback in the following diagram,

S

Im(S) T

Im(u, v) X Im(u′, v′)

A×B Im(f)× Im(g) A′ ×B′

λm

m

(u,v)
ρm

(q1,q2)
⌟

(u′,v′)

ℓm rm

ℓf×ℓg rf×rg

Note that the arrow Im(S) → X is of the form (q1, q2) for unique arrows q1 : Im(S) →
Im(f) and q2 : Im(S) → Im(g) because X ↪→ Im(f) × Im(g). To compare the factorization
m = rm ◦ ℓm (the chosen epi-mono factorization) with m = ρm ◦ λm, there is an epi-mono
factorization of λm of the form λm = λ′m ◦ ℓm. Then there is a morphism from this lifted
system to the system from Example 3.3 given by the cells

Im(f) Im(f)

Im(S) Im(m)

Im(g) Im(g)

Id

q1

q2

Q(u,u′)

λ′
m

Q(v,v′)

Id
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